Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

15x^{2}=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-\frac{8}{15}
Divide both sides by 15.
x=\frac{2\sqrt{30}i}{15} x=-\frac{2\sqrt{30}i}{15}
The equation is now solved.
15x^{2}+8=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 15\times 8}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, 0 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 15\times 8}}{2\times 15}
Square 0.
x=\frac{0±\sqrt{-60\times 8}}{2\times 15}
Multiply -4 times 15.
x=\frac{0±\sqrt{-480}}{2\times 15}
Multiply -60 times 8.
x=\frac{0±4\sqrt{30}i}{2\times 15}
Take the square root of -480.
x=\frac{0±4\sqrt{30}i}{30}
Multiply 2 times 15.
x=\frac{2\sqrt{30}i}{15}
Now solve the equation x=\frac{0±4\sqrt{30}i}{30} when ± is plus.
x=-\frac{2\sqrt{30}i}{15}
Now solve the equation x=\frac{0±4\sqrt{30}i}{30} when ± is minus.
x=\frac{2\sqrt{30}i}{15} x=-\frac{2\sqrt{30}i}{15}
The equation is now solved.