Solve for x
x=\frac{\sqrt{1174}-22}{15}\approx 0.817578893
x=\frac{-\sqrt{1174}-22}{15}\approx -3.750912227
Graph
Share
Copied to clipboard
15x^{2}+44x-46=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-44±\sqrt{44^{2}-4\times 15\left(-46\right)}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, 44 for b, and -46 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-44±\sqrt{1936-4\times 15\left(-46\right)}}{2\times 15}
Square 44.
x=\frac{-44±\sqrt{1936-60\left(-46\right)}}{2\times 15}
Multiply -4 times 15.
x=\frac{-44±\sqrt{1936+2760}}{2\times 15}
Multiply -60 times -46.
x=\frac{-44±\sqrt{4696}}{2\times 15}
Add 1936 to 2760.
x=\frac{-44±2\sqrt{1174}}{2\times 15}
Take the square root of 4696.
x=\frac{-44±2\sqrt{1174}}{30}
Multiply 2 times 15.
x=\frac{2\sqrt{1174}-44}{30}
Now solve the equation x=\frac{-44±2\sqrt{1174}}{30} when ± is plus. Add -44 to 2\sqrt{1174}.
x=\frac{\sqrt{1174}-22}{15}
Divide -44+2\sqrt{1174} by 30.
x=\frac{-2\sqrt{1174}-44}{30}
Now solve the equation x=\frac{-44±2\sqrt{1174}}{30} when ± is minus. Subtract 2\sqrt{1174} from -44.
x=\frac{-\sqrt{1174}-22}{15}
Divide -44-2\sqrt{1174} by 30.
x=\frac{\sqrt{1174}-22}{15} x=\frac{-\sqrt{1174}-22}{15}
The equation is now solved.
15x^{2}+44x-46=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
15x^{2}+44x-46-\left(-46\right)=-\left(-46\right)
Add 46 to both sides of the equation.
15x^{2}+44x=-\left(-46\right)
Subtracting -46 from itself leaves 0.
15x^{2}+44x=46
Subtract -46 from 0.
\frac{15x^{2}+44x}{15}=\frac{46}{15}
Divide both sides by 15.
x^{2}+\frac{44}{15}x=\frac{46}{15}
Dividing by 15 undoes the multiplication by 15.
x^{2}+\frac{44}{15}x+\left(\frac{22}{15}\right)^{2}=\frac{46}{15}+\left(\frac{22}{15}\right)^{2}
Divide \frac{44}{15}, the coefficient of the x term, by 2 to get \frac{22}{15}. Then add the square of \frac{22}{15} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{44}{15}x+\frac{484}{225}=\frac{46}{15}+\frac{484}{225}
Square \frac{22}{15} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{44}{15}x+\frac{484}{225}=\frac{1174}{225}
Add \frac{46}{15} to \frac{484}{225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{22}{15}\right)^{2}=\frac{1174}{225}
Factor x^{2}+\frac{44}{15}x+\frac{484}{225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{22}{15}\right)^{2}}=\sqrt{\frac{1174}{225}}
Take the square root of both sides of the equation.
x+\frac{22}{15}=\frac{\sqrt{1174}}{15} x+\frac{22}{15}=-\frac{\sqrt{1174}}{15}
Simplify.
x=\frac{\sqrt{1174}-22}{15} x=\frac{-\sqrt{1174}-22}{15}
Subtract \frac{22}{15} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}