Factor
\left(3x+2\right)\left(5x+2\right)
Evaluate
\left(3x+2\right)\left(5x+2\right)
Graph
Share
Copied to clipboard
a+b=16 ab=15\times 4=60
Factor the expression by grouping. First, the expression needs to be rewritten as 15x^{2}+ax+bx+4. To find a and b, set up a system to be solved.
1,60 2,30 3,20 4,15 5,12 6,10
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 60.
1+60=61 2+30=32 3+20=23 4+15=19 5+12=17 6+10=16
Calculate the sum for each pair.
a=6 b=10
The solution is the pair that gives sum 16.
\left(15x^{2}+6x\right)+\left(10x+4\right)
Rewrite 15x^{2}+16x+4 as \left(15x^{2}+6x\right)+\left(10x+4\right).
3x\left(5x+2\right)+2\left(5x+2\right)
Factor out 3x in the first and 2 in the second group.
\left(5x+2\right)\left(3x+2\right)
Factor out common term 5x+2 by using distributive property.
15x^{2}+16x+4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-16±\sqrt{16^{2}-4\times 15\times 4}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{256-4\times 15\times 4}}{2\times 15}
Square 16.
x=\frac{-16±\sqrt{256-60\times 4}}{2\times 15}
Multiply -4 times 15.
x=\frac{-16±\sqrt{256-240}}{2\times 15}
Multiply -60 times 4.
x=\frac{-16±\sqrt{16}}{2\times 15}
Add 256 to -240.
x=\frac{-16±4}{2\times 15}
Take the square root of 16.
x=\frac{-16±4}{30}
Multiply 2 times 15.
x=-\frac{12}{30}
Now solve the equation x=\frac{-16±4}{30} when ± is plus. Add -16 to 4.
x=-\frac{2}{5}
Reduce the fraction \frac{-12}{30} to lowest terms by extracting and canceling out 6.
x=-\frac{20}{30}
Now solve the equation x=\frac{-16±4}{30} when ± is minus. Subtract 4 from -16.
x=-\frac{2}{3}
Reduce the fraction \frac{-20}{30} to lowest terms by extracting and canceling out 10.
15x^{2}+16x+4=15\left(x-\left(-\frac{2}{5}\right)\right)\left(x-\left(-\frac{2}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{2}{5} for x_{1} and -\frac{2}{3} for x_{2}.
15x^{2}+16x+4=15\left(x+\frac{2}{5}\right)\left(x+\frac{2}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
15x^{2}+16x+4=15\times \frac{5x+2}{5}\left(x+\frac{2}{3}\right)
Add \frac{2}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
15x^{2}+16x+4=15\times \frac{5x+2}{5}\times \frac{3x+2}{3}
Add \frac{2}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
15x^{2}+16x+4=15\times \frac{\left(5x+2\right)\left(3x+2\right)}{5\times 3}
Multiply \frac{5x+2}{5} times \frac{3x+2}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
15x^{2}+16x+4=15\times \frac{\left(5x+2\right)\left(3x+2\right)}{15}
Multiply 5 times 3.
15x^{2}+16x+4=\left(5x+2\right)\left(3x+2\right)
Cancel out 15, the greatest common factor in 15 and 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}