Solve for x
x=\frac{23}{244}\approx 0.094262295
Graph
Share
Copied to clipboard
30\times 65x-\left(24-2\left(x-5\right)\right)=150
Multiply 15 and 2 to get 30.
1950x-\left(24-2\left(x-5\right)\right)=150
Multiply 30 and 65 to get 1950.
1950x-\left(24-2x+10\right)=150
Use the distributive property to multiply -2 by x-5.
1950x-\left(34-2x\right)=150
Add 24 and 10 to get 34.
1950x-34-\left(-2x\right)=150
To find the opposite of 34-2x, find the opposite of each term.
1950x-34+2x=150
The opposite of -2x is 2x.
1952x-34=150
Combine 1950x and 2x to get 1952x.
1952x=150+34
Add 34 to both sides.
1952x=184
Add 150 and 34 to get 184.
x=\frac{184}{1952}
Divide both sides by 1952.
x=\frac{23}{244}
Reduce the fraction \frac{184}{1952} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}