Evaluate
\frac{785}{41}\approx 19.146341463
Factor
\frac{5 \cdot 157}{41} = 19\frac{6}{41} = 19.146341463414632
Share
Copied to clipboard
\frac{375}{41}-15+25
Multiply 15 and 25 to get 375.
\frac{375}{41}-\frac{615}{41}+25
Convert 15 to fraction \frac{615}{41}.
\frac{375-615}{41}+25
Since \frac{375}{41} and \frac{615}{41} have the same denominator, subtract them by subtracting their numerators.
-\frac{240}{41}+25
Subtract 615 from 375 to get -240.
-\frac{240}{41}+\frac{1025}{41}
Convert 25 to fraction \frac{1025}{41}.
\frac{-240+1025}{41}
Since -\frac{240}{41} and \frac{1025}{41} have the same denominator, add them by adding their numerators.
\frac{785}{41}
Add -240 and 1025 to get 785.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}