Solve for x (complex solution)
x=\frac{17+\sqrt{611}i}{30}\approx 0.566666667+0.82394714i
x=\frac{-\sqrt{611}i+17}{30}\approx 0.566666667-0.82394714i
Graph
Share
Copied to clipboard
15x^{2}-17x+15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 15\times 15}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, -17 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 15\times 15}}{2\times 15}
Square -17.
x=\frac{-\left(-17\right)±\sqrt{289-60\times 15}}{2\times 15}
Multiply -4 times 15.
x=\frac{-\left(-17\right)±\sqrt{289-900}}{2\times 15}
Multiply -60 times 15.
x=\frac{-\left(-17\right)±\sqrt{-611}}{2\times 15}
Add 289 to -900.
x=\frac{-\left(-17\right)±\sqrt{611}i}{2\times 15}
Take the square root of -611.
x=\frac{17±\sqrt{611}i}{2\times 15}
The opposite of -17 is 17.
x=\frac{17±\sqrt{611}i}{30}
Multiply 2 times 15.
x=\frac{17+\sqrt{611}i}{30}
Now solve the equation x=\frac{17±\sqrt{611}i}{30} when ± is plus. Add 17 to i\sqrt{611}.
x=\frac{-\sqrt{611}i+17}{30}
Now solve the equation x=\frac{17±\sqrt{611}i}{30} when ± is minus. Subtract i\sqrt{611} from 17.
x=\frac{17+\sqrt{611}i}{30} x=\frac{-\sqrt{611}i+17}{30}
The equation is now solved.
15x^{2}-17x+15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
15x^{2}-17x+15-15=-15
Subtract 15 from both sides of the equation.
15x^{2}-17x=-15
Subtracting 15 from itself leaves 0.
\frac{15x^{2}-17x}{15}=-\frac{15}{15}
Divide both sides by 15.
x^{2}-\frac{17}{15}x=-\frac{15}{15}
Dividing by 15 undoes the multiplication by 15.
x^{2}-\frac{17}{15}x=-1
Divide -15 by 15.
x^{2}-\frac{17}{15}x+\left(-\frac{17}{30}\right)^{2}=-1+\left(-\frac{17}{30}\right)^{2}
Divide -\frac{17}{15}, the coefficient of the x term, by 2 to get -\frac{17}{30}. Then add the square of -\frac{17}{30} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{17}{15}x+\frac{289}{900}=-1+\frac{289}{900}
Square -\frac{17}{30} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{17}{15}x+\frac{289}{900}=-\frac{611}{900}
Add -1 to \frac{289}{900}.
\left(x-\frac{17}{30}\right)^{2}=-\frac{611}{900}
Factor x^{2}-\frac{17}{15}x+\frac{289}{900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{30}\right)^{2}}=\sqrt{-\frac{611}{900}}
Take the square root of both sides of the equation.
x-\frac{17}{30}=\frac{\sqrt{611}i}{30} x-\frac{17}{30}=-\frac{\sqrt{611}i}{30}
Simplify.
x=\frac{17+\sqrt{611}i}{30} x=\frac{-\sqrt{611}i+17}{30}
Add \frac{17}{30} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}