Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{75+2}{5}-\left(\frac{2\times 7+4}{7}+\frac{6\times 4+3}{4}\right)
Multiply 15 and 5 to get 75.
\frac{77}{5}-\left(\frac{2\times 7+4}{7}+\frac{6\times 4+3}{4}\right)
Add 75 and 2 to get 77.
\frac{77}{5}-\left(\frac{14+4}{7}+\frac{6\times 4+3}{4}\right)
Multiply 2 and 7 to get 14.
\frac{77}{5}-\left(\frac{18}{7}+\frac{6\times 4+3}{4}\right)
Add 14 and 4 to get 18.
\frac{77}{5}-\left(\frac{18}{7}+\frac{24+3}{4}\right)
Multiply 6 and 4 to get 24.
\frac{77}{5}-\left(\frac{18}{7}+\frac{27}{4}\right)
Add 24 and 3 to get 27.
\frac{77}{5}-\left(\frac{72}{28}+\frac{189}{28}\right)
Least common multiple of 7 and 4 is 28. Convert \frac{18}{7} and \frac{27}{4} to fractions with denominator 28.
\frac{77}{5}-\frac{72+189}{28}
Since \frac{72}{28} and \frac{189}{28} have the same denominator, add them by adding their numerators.
\frac{77}{5}-\frac{261}{28}
Add 72 and 189 to get 261.
\frac{2156}{140}-\frac{1305}{140}
Least common multiple of 5 and 28 is 140. Convert \frac{77}{5} and \frac{261}{28} to fractions with denominator 140.
\frac{2156-1305}{140}
Since \frac{2156}{140} and \frac{1305}{140} have the same denominator, subtract them by subtracting their numerators.
\frac{851}{140}
Subtract 1305 from 2156 to get 851.