Evaluate
\frac{61}{5}=12.2
Factor
\frac{61}{5} = 12\frac{1}{5} = 12.2
Quiz
Arithmetic
5 problems similar to:
15 \frac { 8 } { 10 } - 9 \frac { 9 } { 10 } + 6 \frac { 3 } { 10 }
Share
Copied to clipboard
\frac{150+8}{10}-\frac{9\times 10+9}{10}+\frac{6\times 10+3}{10}
Multiply 15 and 10 to get 150.
\frac{158}{10}-\frac{9\times 10+9}{10}+\frac{6\times 10+3}{10}
Add 150 and 8 to get 158.
\frac{79}{5}-\frac{9\times 10+9}{10}+\frac{6\times 10+3}{10}
Reduce the fraction \frac{158}{10} to lowest terms by extracting and canceling out 2.
\frac{79}{5}-\frac{90+9}{10}+\frac{6\times 10+3}{10}
Multiply 9 and 10 to get 90.
\frac{79}{5}-\frac{99}{10}+\frac{6\times 10+3}{10}
Add 90 and 9 to get 99.
\frac{158}{10}-\frac{99}{10}+\frac{6\times 10+3}{10}
Least common multiple of 5 and 10 is 10. Convert \frac{79}{5} and \frac{99}{10} to fractions with denominator 10.
\frac{158-99}{10}+\frac{6\times 10+3}{10}
Since \frac{158}{10} and \frac{99}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{59}{10}+\frac{6\times 10+3}{10}
Subtract 99 from 158 to get 59.
\frac{59}{10}+\frac{60+3}{10}
Multiply 6 and 10 to get 60.
\frac{59}{10}+\frac{63}{10}
Add 60 and 3 to get 63.
\frac{59+63}{10}
Since \frac{59}{10} and \frac{63}{10} have the same denominator, add them by adding their numerators.
\frac{122}{10}
Add 59 and 63 to get 122.
\frac{61}{5}
Reduce the fraction \frac{122}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}