Evaluate
\frac{7\sqrt{3}}{3}+\frac{15\sqrt{2}}{2}\approx 14.648053602
Share
Copied to clipboard
15\times \frac{\sqrt{2}}{2}+7\tan(30)
Get the value of \cos(45) from trigonometric values table.
\frac{15\sqrt{2}}{2}+7\tan(30)
Express 15\times \frac{\sqrt{2}}{2} as a single fraction.
\frac{15\sqrt{2}}{2}+7\times \frac{\sqrt{3}}{3}
Get the value of \tan(30) from trigonometric values table.
\frac{15\sqrt{2}}{2}+\frac{7\sqrt{3}}{3}
Express 7\times \frac{\sqrt{3}}{3} as a single fraction.
\frac{3\times 15\sqrt{2}}{6}+\frac{2\times 7\sqrt{3}}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{15\sqrt{2}}{2} times \frac{3}{3}. Multiply \frac{7\sqrt{3}}{3} times \frac{2}{2}.
\frac{3\times 15\sqrt{2}+2\times 7\sqrt{3}}{6}
Since \frac{3\times 15\sqrt{2}}{6} and \frac{2\times 7\sqrt{3}}{6} have the same denominator, add them by adding their numerators.
\frac{45\sqrt{2}+14\sqrt{3}}{6}
Do the multiplications in 3\times 15\sqrt{2}+2\times 7\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}