15 \% \times r = 25 \% \times ( y - 750 )
Solve for r
r=\frac{5\left(y-750\right)}{3}
Solve for y
y=\frac{3\left(r+1250\right)}{5}
Share
Copied to clipboard
\frac{3}{20}r=\frac{25}{100}\left(y-750\right)
Reduce the fraction \frac{15}{100} to lowest terms by extracting and canceling out 5.
\frac{3}{20}r=\frac{1}{4}\left(y-750\right)
Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
\frac{3}{20}r=\frac{1}{4}y-\frac{375}{2}
Use the distributive property to multiply \frac{1}{4} by y-750.
\frac{3}{20}r=\frac{y}{4}-\frac{375}{2}
The equation is in standard form.
\frac{\frac{3}{20}r}{\frac{3}{20}}=\frac{\frac{y}{4}-\frac{375}{2}}{\frac{3}{20}}
Divide both sides of the equation by \frac{3}{20}, which is the same as multiplying both sides by the reciprocal of the fraction.
r=\frac{\frac{y}{4}-\frac{375}{2}}{\frac{3}{20}}
Dividing by \frac{3}{20} undoes the multiplication by \frac{3}{20}.
r=\frac{5y}{3}-1250
Divide \frac{y}{4}-\frac{375}{2} by \frac{3}{20} by multiplying \frac{y}{4}-\frac{375}{2} by the reciprocal of \frac{3}{20}.
\frac{3}{20}r=\frac{25}{100}\left(y-750\right)
Reduce the fraction \frac{15}{100} to lowest terms by extracting and canceling out 5.
\frac{3}{20}r=\frac{1}{4}\left(y-750\right)
Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
\frac{3}{20}r=\frac{1}{4}y-\frac{375}{2}
Use the distributive property to multiply \frac{1}{4} by y-750.
\frac{1}{4}y-\frac{375}{2}=\frac{3}{20}r
Swap sides so that all variable terms are on the left hand side.
\frac{1}{4}y=\frac{3}{20}r+\frac{375}{2}
Add \frac{375}{2} to both sides.
\frac{1}{4}y=\frac{3r}{20}+\frac{375}{2}
The equation is in standard form.
\frac{\frac{1}{4}y}{\frac{1}{4}}=\frac{\frac{3r}{20}+\frac{375}{2}}{\frac{1}{4}}
Multiply both sides by 4.
y=\frac{\frac{3r}{20}+\frac{375}{2}}{\frac{1}{4}}
Dividing by \frac{1}{4} undoes the multiplication by \frac{1}{4}.
y=\frac{3r}{5}+750
Divide \frac{3r}{20}+\frac{375}{2} by \frac{1}{4} by multiplying \frac{3r}{20}+\frac{375}{2} by the reciprocal of \frac{1}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}