Solve for t
t=2
t=6
Share
Copied to clipboard
10t-\frac{5}{4}t^{2}=15
Swap sides so that all variable terms are on the left hand side.
10t-\frac{5}{4}t^{2}-15=0
Subtract 15 from both sides.
-\frac{5}{4}t^{2}+10t-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-10±\sqrt{10^{2}-4\left(-\frac{5}{4}\right)\left(-15\right)}}{2\left(-\frac{5}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{5}{4} for a, 10 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-10±\sqrt{100-4\left(-\frac{5}{4}\right)\left(-15\right)}}{2\left(-\frac{5}{4}\right)}
Square 10.
t=\frac{-10±\sqrt{100+5\left(-15\right)}}{2\left(-\frac{5}{4}\right)}
Multiply -4 times -\frac{5}{4}.
t=\frac{-10±\sqrt{100-75}}{2\left(-\frac{5}{4}\right)}
Multiply 5 times -15.
t=\frac{-10±\sqrt{25}}{2\left(-\frac{5}{4}\right)}
Add 100 to -75.
t=\frac{-10±5}{2\left(-\frac{5}{4}\right)}
Take the square root of 25.
t=\frac{-10±5}{-\frac{5}{2}}
Multiply 2 times -\frac{5}{4}.
t=-\frac{5}{-\frac{5}{2}}
Now solve the equation t=\frac{-10±5}{-\frac{5}{2}} when ± is plus. Add -10 to 5.
t=2
Divide -5 by -\frac{5}{2} by multiplying -5 by the reciprocal of -\frac{5}{2}.
t=-\frac{15}{-\frac{5}{2}}
Now solve the equation t=\frac{-10±5}{-\frac{5}{2}} when ± is minus. Subtract 5 from -10.
t=6
Divide -15 by -\frac{5}{2} by multiplying -15 by the reciprocal of -\frac{5}{2}.
t=2 t=6
The equation is now solved.
10t-\frac{5}{4}t^{2}=15
Swap sides so that all variable terms are on the left hand side.
-\frac{5}{4}t^{2}+10t=15
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{5}{4}t^{2}+10t}{-\frac{5}{4}}=\frac{15}{-\frac{5}{4}}
Divide both sides of the equation by -\frac{5}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{10}{-\frac{5}{4}}t=\frac{15}{-\frac{5}{4}}
Dividing by -\frac{5}{4} undoes the multiplication by -\frac{5}{4}.
t^{2}-8t=\frac{15}{-\frac{5}{4}}
Divide 10 by -\frac{5}{4} by multiplying 10 by the reciprocal of -\frac{5}{4}.
t^{2}-8t=-12
Divide 15 by -\frac{5}{4} by multiplying 15 by the reciprocal of -\frac{5}{4}.
t^{2}-8t+\left(-4\right)^{2}=-12+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-8t+16=-12+16
Square -4.
t^{2}-8t+16=4
Add -12 to 16.
\left(t-4\right)^{2}=4
Factor t^{2}-8t+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-4\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
t-4=2 t-4=-2
Simplify.
t=6 t=2
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}