Skip to main content
Solve for V
Tick mark Image

Similar Problems from Web Search

Share

15=\frac{V}{\sqrt{4-64+10\times 5^{2}}}
Calculate 8 to the power of 2 and get 64.
15=\frac{V}{\sqrt{-60+10\times 5^{2}}}
Subtract 64 from 4 to get -60.
15=\frac{V}{\sqrt{-60+10\times 25}}
Calculate 5 to the power of 2 and get 25.
15=\frac{V}{\sqrt{-60+250}}
Multiply 10 and 25 to get 250.
15=\frac{V}{\sqrt{190}}
Add -60 and 250 to get 190.
15=\frac{V\sqrt{190}}{\left(\sqrt{190}\right)^{2}}
Rationalize the denominator of \frac{V}{\sqrt{190}} by multiplying numerator and denominator by \sqrt{190}.
15=\frac{V\sqrt{190}}{190}
The square of \sqrt{190} is 190.
\frac{V\sqrt{190}}{190}=15
Swap sides so that all variable terms are on the left hand side.
V\sqrt{190}=15\times 190
Multiply both sides by 190.
V\sqrt{190}=2850
Multiply 15 and 190 to get 2850.
\sqrt{190}V=2850
The equation is in standard form.
\frac{\sqrt{190}V}{\sqrt{190}}=\frac{2850}{\sqrt{190}}
Divide both sides by \sqrt{190}.
V=\frac{2850}{\sqrt{190}}
Dividing by \sqrt{190} undoes the multiplication by \sqrt{190}.
V=15\sqrt{190}
Divide 2850 by \sqrt{190}.