Solve for V
V=15\sqrt{190}\approx 206.760731281
Share
Copied to clipboard
15=\frac{V}{\sqrt{4-64+10\times 5^{2}}}
Calculate 8 to the power of 2 and get 64.
15=\frac{V}{\sqrt{-60+10\times 5^{2}}}
Subtract 64 from 4 to get -60.
15=\frac{V}{\sqrt{-60+10\times 25}}
Calculate 5 to the power of 2 and get 25.
15=\frac{V}{\sqrt{-60+250}}
Multiply 10 and 25 to get 250.
15=\frac{V}{\sqrt{190}}
Add -60 and 250 to get 190.
15=\frac{V\sqrt{190}}{\left(\sqrt{190}\right)^{2}}
Rationalize the denominator of \frac{V}{\sqrt{190}} by multiplying numerator and denominator by \sqrt{190}.
15=\frac{V\sqrt{190}}{190}
The square of \sqrt{190} is 190.
\frac{V\sqrt{190}}{190}=15
Swap sides so that all variable terms are on the left hand side.
V\sqrt{190}=15\times 190
Multiply both sides by 190.
V\sqrt{190}=2850
Multiply 15 and 190 to get 2850.
\sqrt{190}V=2850
The equation is in standard form.
\frac{\sqrt{190}V}{\sqrt{190}}=\frac{2850}{\sqrt{190}}
Divide both sides by \sqrt{190}.
V=\frac{2850}{\sqrt{190}}
Dividing by \sqrt{190} undoes the multiplication by \sqrt{190}.
V=15\sqrt{190}
Divide 2850 by \sqrt{190}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}