Solve for x
x=\frac{4}{11}\approx 0.363636364
Graph
Share
Copied to clipboard
48\left(33x+70\right)^{-1}\times \frac{15\times 8+3}{8}-2\left(2+1\right)=3
Multiply both sides of the equation by 4, the least common multiple of 2,4.
48\left(33x+70\right)^{-1}\times \frac{120+3}{8}-2\left(2+1\right)=3
Multiply 15 and 8 to get 120.
48\left(33x+70\right)^{-1}\times \frac{123}{8}-2\left(2+1\right)=3
Add 120 and 3 to get 123.
738\left(33x+70\right)^{-1}-2\left(2+1\right)=3
Multiply 48 and \frac{123}{8} to get 738.
738\left(33x+70\right)^{-1}-2\times 3=3
Add 2 and 1 to get 3.
738\left(33x+70\right)^{-1}-6=3
Multiply -2 and 3 to get -6.
738\left(33x+70\right)^{-1}=3+6
Add 6 to both sides.
738\left(33x+70\right)^{-1}=9
Add 3 and 6 to get 9.
\left(33x+70\right)^{-1}=\frac{9}{738}
Divide both sides by 738.
\left(33x+70\right)^{-1}=\frac{1}{82}
Reduce the fraction \frac{9}{738} to lowest terms by extracting and canceling out 9.
\frac{1}{33x+70}=\frac{1}{82}
Reorder the terms.
82=33x+70
Variable x cannot be equal to -\frac{70}{33} since division by zero is not defined. Multiply both sides of the equation by 82\left(33x+70\right), the least common multiple of 33x+70,82.
33x+70=82
Swap sides so that all variable terms are on the left hand side.
33x=82-70
Subtract 70 from both sides.
33x=12
Subtract 70 from 82 to get 12.
x=\frac{12}{33}
Divide both sides by 33.
x=\frac{4}{11}
Reduce the fraction \frac{12}{33} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}