Solve for x
x = \frac{\sqrt{967} - 1}{14} \approx 2.149758829
x=\frac{-\sqrt{967}-1}{14}\approx -2.292615972
Graph
Share
Copied to clipboard
14x^{2}-56=13-2x
Multiply x and x to get x^{2}.
14x^{2}-56-13=-2x
Subtract 13 from both sides.
14x^{2}-69=-2x
Subtract 13 from -56 to get -69.
14x^{2}-69+2x=0
Add 2x to both sides.
14x^{2}+2x-69=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\times 14\left(-69\right)}}{2\times 14}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 14 for a, 2 for b, and -69 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 14\left(-69\right)}}{2\times 14}
Square 2.
x=\frac{-2±\sqrt{4-56\left(-69\right)}}{2\times 14}
Multiply -4 times 14.
x=\frac{-2±\sqrt{4+3864}}{2\times 14}
Multiply -56 times -69.
x=\frac{-2±\sqrt{3868}}{2\times 14}
Add 4 to 3864.
x=\frac{-2±2\sqrt{967}}{2\times 14}
Take the square root of 3868.
x=\frac{-2±2\sqrt{967}}{28}
Multiply 2 times 14.
x=\frac{2\sqrt{967}-2}{28}
Now solve the equation x=\frac{-2±2\sqrt{967}}{28} when ± is plus. Add -2 to 2\sqrt{967}.
x=\frac{\sqrt{967}-1}{14}
Divide -2+2\sqrt{967} by 28.
x=\frac{-2\sqrt{967}-2}{28}
Now solve the equation x=\frac{-2±2\sqrt{967}}{28} when ± is minus. Subtract 2\sqrt{967} from -2.
x=\frac{-\sqrt{967}-1}{14}
Divide -2-2\sqrt{967} by 28.
x=\frac{\sqrt{967}-1}{14} x=\frac{-\sqrt{967}-1}{14}
The equation is now solved.
14x^{2}-56=13-2x
Multiply x and x to get x^{2}.
14x^{2}-56+2x=13
Add 2x to both sides.
14x^{2}+2x=13+56
Add 56 to both sides.
14x^{2}+2x=69
Add 13 and 56 to get 69.
\frac{14x^{2}+2x}{14}=\frac{69}{14}
Divide both sides by 14.
x^{2}+\frac{2}{14}x=\frac{69}{14}
Dividing by 14 undoes the multiplication by 14.
x^{2}+\frac{1}{7}x=\frac{69}{14}
Reduce the fraction \frac{2}{14} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{7}x+\left(\frac{1}{14}\right)^{2}=\frac{69}{14}+\left(\frac{1}{14}\right)^{2}
Divide \frac{1}{7}, the coefficient of the x term, by 2 to get \frac{1}{14}. Then add the square of \frac{1}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{7}x+\frac{1}{196}=\frac{69}{14}+\frac{1}{196}
Square \frac{1}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{7}x+\frac{1}{196}=\frac{967}{196}
Add \frac{69}{14} to \frac{1}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{14}\right)^{2}=\frac{967}{196}
Factor x^{2}+\frac{1}{7}x+\frac{1}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{14}\right)^{2}}=\sqrt{\frac{967}{196}}
Take the square root of both sides of the equation.
x+\frac{1}{14}=\frac{\sqrt{967}}{14} x+\frac{1}{14}=-\frac{\sqrt{967}}{14}
Simplify.
x=\frac{\sqrt{967}-1}{14} x=\frac{-\sqrt{967}-1}{14}
Subtract \frac{1}{14} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}