14x \times 90 \% -x=390
Solve for x
x = \frac{975}{29} = 33\frac{18}{29} \approx 33.620689655
Graph
Share
Copied to clipboard
14x\times \frac{9}{10}-x=390
Reduce the fraction \frac{90}{100} to lowest terms by extracting and canceling out 10.
\frac{14\times 9}{10}x-x=390
Express 14\times \frac{9}{10} as a single fraction.
\frac{126}{10}x-x=390
Multiply 14 and 9 to get 126.
\frac{63}{5}x-x=390
Reduce the fraction \frac{126}{10} to lowest terms by extracting and canceling out 2.
\frac{58}{5}x=390
Combine \frac{63}{5}x and -x to get \frac{58}{5}x.
x=390\times \frac{5}{58}
Multiply both sides by \frac{5}{58}, the reciprocal of \frac{58}{5}.
x=\frac{390\times 5}{58}
Express 390\times \frac{5}{58} as a single fraction.
x=\frac{1950}{58}
Multiply 390 and 5 to get 1950.
x=\frac{975}{29}
Reduce the fraction \frac{1950}{58} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}