14x \times 80 \% +(210-14x) \times 90 \% =182
Solve for x
x=5
Graph
Share
Copied to clipboard
14x\times \frac{4}{5}+\left(210-14x\right)\times \frac{90}{100}=182
Reduce the fraction \frac{80}{100} to lowest terms by extracting and canceling out 20.
\frac{14\times 4}{5}x+\left(210-14x\right)\times \frac{90}{100}=182
Express 14\times \frac{4}{5} as a single fraction.
\frac{56}{5}x+\left(210-14x\right)\times \frac{90}{100}=182
Multiply 14 and 4 to get 56.
\frac{56}{5}x+\left(210-14x\right)\times \frac{9}{10}=182
Reduce the fraction \frac{90}{100} to lowest terms by extracting and canceling out 10.
\frac{56}{5}x+210\times \frac{9}{10}-14x\times \frac{9}{10}=182
Use the distributive property to multiply 210-14x by \frac{9}{10}.
\frac{56}{5}x+\frac{210\times 9}{10}-14x\times \frac{9}{10}=182
Express 210\times \frac{9}{10} as a single fraction.
\frac{56}{5}x+\frac{1890}{10}-14x\times \frac{9}{10}=182
Multiply 210 and 9 to get 1890.
\frac{56}{5}x+189-14x\times \frac{9}{10}=182
Divide 1890 by 10 to get 189.
\frac{56}{5}x+189+\frac{-14\times 9}{10}x=182
Express -14\times \frac{9}{10} as a single fraction.
\frac{56}{5}x+189+\frac{-126}{10}x=182
Multiply -14 and 9 to get -126.
\frac{56}{5}x+189-\frac{63}{5}x=182
Reduce the fraction \frac{-126}{10} to lowest terms by extracting and canceling out 2.
-\frac{7}{5}x+189=182
Combine \frac{56}{5}x and -\frac{63}{5}x to get -\frac{7}{5}x.
-\frac{7}{5}x=182-189
Subtract 189 from both sides.
-\frac{7}{5}x=-7
Subtract 189 from 182 to get -7.
x=-7\left(-\frac{5}{7}\right)
Multiply both sides by -\frac{5}{7}, the reciprocal of -\frac{7}{5}.
x=5
Multiply -7 times -\frac{5}{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}