Evaluate
\frac{14906892}{1489}\approx 10011.344526528
Factor
\frac{2 ^ {2} \cdot 3 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 73}{1489} = 10011\frac{513}{1489} = 10011.344526527871
Share
Copied to clipboard
\begin{array}{l}\phantom{1489)}\phantom{1}\\1489\overline{)14906892}\\\end{array}
Use the 1^{st} digit 1 from dividend 14906892
\begin{array}{l}\phantom{1489)}0\phantom{2}\\1489\overline{)14906892}\\\end{array}
Since 1 is less than 1489, use the next digit 4 from dividend 14906892 and add 0 to the quotient
\begin{array}{l}\phantom{1489)}0\phantom{3}\\1489\overline{)14906892}\\\end{array}
Use the 2^{nd} digit 4 from dividend 14906892
\begin{array}{l}\phantom{1489)}00\phantom{4}\\1489\overline{)14906892}\\\end{array}
Since 14 is less than 1489, use the next digit 9 from dividend 14906892 and add 0 to the quotient
\begin{array}{l}\phantom{1489)}00\phantom{5}\\1489\overline{)14906892}\\\end{array}
Use the 3^{rd} digit 9 from dividend 14906892
\begin{array}{l}\phantom{1489)}000\phantom{6}\\1489\overline{)14906892}\\\end{array}
Since 149 is less than 1489, use the next digit 0 from dividend 14906892 and add 0 to the quotient
\begin{array}{l}\phantom{1489)}000\phantom{7}\\1489\overline{)14906892}\\\end{array}
Use the 4^{th} digit 0 from dividend 14906892
\begin{array}{l}\phantom{1489)}0001\phantom{8}\\1489\overline{)14906892}\\\phantom{1489)}\underline{\phantom{}1489\phantom{9999}}\\\phantom{1489)999}1\\\end{array}
Find closest multiple of 1489 to 1490. We see that 1 \times 1489 = 1489 is the nearest. Now subtract 1489 from 1490 to get reminder 1. Add 1 to quotient.
\begin{array}{l}\phantom{1489)}0001\phantom{9}\\1489\overline{)14906892}\\\phantom{1489)}\underline{\phantom{}1489\phantom{9999}}\\\phantom{1489)999}16\\\end{array}
Use the 5^{th} digit 6 from dividend 14906892
\begin{array}{l}\phantom{1489)}00010\phantom{10}\\1489\overline{)14906892}\\\phantom{1489)}\underline{\phantom{}1489\phantom{9999}}\\\phantom{1489)999}16\\\end{array}
Since 16 is less than 1489, use the next digit 8 from dividend 14906892 and add 0 to the quotient
\begin{array}{l}\phantom{1489)}00010\phantom{11}\\1489\overline{)14906892}\\\phantom{1489)}\underline{\phantom{}1489\phantom{9999}}\\\phantom{1489)999}168\\\end{array}
Use the 6^{th} digit 8 from dividend 14906892
\begin{array}{l}\phantom{1489)}000100\phantom{12}\\1489\overline{)14906892}\\\phantom{1489)}\underline{\phantom{}1489\phantom{9999}}\\\phantom{1489)999}168\\\end{array}
Since 168 is less than 1489, use the next digit 9 from dividend 14906892 and add 0 to the quotient
\begin{array}{l}\phantom{1489)}000100\phantom{13}\\1489\overline{)14906892}\\\phantom{1489)}\underline{\phantom{}1489\phantom{9999}}\\\phantom{1489)999}1689\\\end{array}
Use the 7^{th} digit 9 from dividend 14906892
\begin{array}{l}\phantom{1489)}0001001\phantom{14}\\1489\overline{)14906892}\\\phantom{1489)}\underline{\phantom{}1489\phantom{9999}}\\\phantom{1489)999}1689\\\phantom{1489)}\underline{\phantom{999}1489\phantom{9}}\\\phantom{1489)9999}200\\\end{array}
Find closest multiple of 1489 to 1689. We see that 1 \times 1489 = 1489 is the nearest. Now subtract 1489 from 1689 to get reminder 200. Add 1 to quotient.
\begin{array}{l}\phantom{1489)}0001001\phantom{15}\\1489\overline{)14906892}\\\phantom{1489)}\underline{\phantom{}1489\phantom{9999}}\\\phantom{1489)999}1689\\\phantom{1489)}\underline{\phantom{999}1489\phantom{9}}\\\phantom{1489)9999}2002\\\end{array}
Use the 8^{th} digit 2 from dividend 14906892
\begin{array}{l}\phantom{1489)}00010011\phantom{16}\\1489\overline{)14906892}\\\phantom{1489)}\underline{\phantom{}1489\phantom{9999}}\\\phantom{1489)999}1689\\\phantom{1489)}\underline{\phantom{999}1489\phantom{9}}\\\phantom{1489)9999}2002\\\phantom{1489)}\underline{\phantom{9999}1489\phantom{}}\\\phantom{1489)99999}513\\\end{array}
Find closest multiple of 1489 to 2002. We see that 1 \times 1489 = 1489 is the nearest. Now subtract 1489 from 2002 to get reminder 513. Add 1 to quotient.
\text{Quotient: }10011 \text{Reminder: }513
Since 513 is less than 1489, stop the division. The reminder is 513. The topmost line 00010011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 10011.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}