Evaluate
\frac{148}{21}\approx 7.047619048
Factor
\frac{2 ^ {2} \cdot 37}{3 \cdot 7} = 7\frac{1}{21} = 7.0476190476190474
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)148}\\\end{array}
Use the 1^{st} digit 1 from dividend 148
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)148}\\\end{array}
Since 1 is less than 21, use the next digit 4 from dividend 148 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)148}\\\end{array}
Use the 2^{nd} digit 4 from dividend 148
\begin{array}{l}\phantom{21)}00\phantom{4}\\21\overline{)148}\\\end{array}
Since 14 is less than 21, use the next digit 8 from dividend 148 and add 0 to the quotient
\begin{array}{l}\phantom{21)}00\phantom{5}\\21\overline{)148}\\\end{array}
Use the 3^{rd} digit 8 from dividend 148
\begin{array}{l}\phantom{21)}007\phantom{6}\\21\overline{)148}\\\phantom{21)}\underline{\phantom{}147\phantom{}}\\\phantom{21)99}1\\\end{array}
Find closest multiple of 21 to 148. We see that 7 \times 21 = 147 is the nearest. Now subtract 147 from 148 to get reminder 1. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }1
Since 1 is less than 21, stop the division. The reminder is 1. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}