Evaluate
\frac{148}{59}\approx 2.508474576
Factor
\frac{2 ^ {2} \cdot 37}{59} = 2\frac{30}{59} = 2.5084745762711864
Share
Copied to clipboard
\begin{array}{l}\phantom{59)}\phantom{1}\\59\overline{)148}\\\end{array}
Use the 1^{st} digit 1 from dividend 148
\begin{array}{l}\phantom{59)}0\phantom{2}\\59\overline{)148}\\\end{array}
Since 1 is less than 59, use the next digit 4 from dividend 148 and add 0 to the quotient
\begin{array}{l}\phantom{59)}0\phantom{3}\\59\overline{)148}\\\end{array}
Use the 2^{nd} digit 4 from dividend 148
\begin{array}{l}\phantom{59)}00\phantom{4}\\59\overline{)148}\\\end{array}
Since 14 is less than 59, use the next digit 8 from dividend 148 and add 0 to the quotient
\begin{array}{l}\phantom{59)}00\phantom{5}\\59\overline{)148}\\\end{array}
Use the 3^{rd} digit 8 from dividend 148
\begin{array}{l}\phantom{59)}002\phantom{6}\\59\overline{)148}\\\phantom{59)}\underline{\phantom{}118\phantom{}}\\\phantom{59)9}30\\\end{array}
Find closest multiple of 59 to 148. We see that 2 \times 59 = 118 is the nearest. Now subtract 118 from 148 to get reminder 30. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }30
Since 30 is less than 59, stop the division. The reminder is 30. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}