Solve for x
x=-\frac{3}{7}\approx -0.428571429
x=\frac{6}{7}\approx 0.857142857
Graph
Share
Copied to clipboard
147x^{2}-63x-54=0
Subtract 54 from both sides.
49x^{2}-21x-18=0
Divide both sides by 3.
a+b=-21 ab=49\left(-18\right)=-882
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 49x^{2}+ax+bx-18. To find a and b, set up a system to be solved.
1,-882 2,-441 3,-294 6,-147 7,-126 9,-98 14,-63 18,-49 21,-42
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -882.
1-882=-881 2-441=-439 3-294=-291 6-147=-141 7-126=-119 9-98=-89 14-63=-49 18-49=-31 21-42=-21
Calculate the sum for each pair.
a=-42 b=21
The solution is the pair that gives sum -21.
\left(49x^{2}-42x\right)+\left(21x-18\right)
Rewrite 49x^{2}-21x-18 as \left(49x^{2}-42x\right)+\left(21x-18\right).
7x\left(7x-6\right)+3\left(7x-6\right)
Factor out 7x in the first and 3 in the second group.
\left(7x-6\right)\left(7x+3\right)
Factor out common term 7x-6 by using distributive property.
x=\frac{6}{7} x=-\frac{3}{7}
To find equation solutions, solve 7x-6=0 and 7x+3=0.
147x^{2}-63x=54
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
147x^{2}-63x-54=54-54
Subtract 54 from both sides of the equation.
147x^{2}-63x-54=0
Subtracting 54 from itself leaves 0.
x=\frac{-\left(-63\right)±\sqrt{\left(-63\right)^{2}-4\times 147\left(-54\right)}}{2\times 147}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 147 for a, -63 for b, and -54 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-63\right)±\sqrt{3969-4\times 147\left(-54\right)}}{2\times 147}
Square -63.
x=\frac{-\left(-63\right)±\sqrt{3969-588\left(-54\right)}}{2\times 147}
Multiply -4 times 147.
x=\frac{-\left(-63\right)±\sqrt{3969+31752}}{2\times 147}
Multiply -588 times -54.
x=\frac{-\left(-63\right)±\sqrt{35721}}{2\times 147}
Add 3969 to 31752.
x=\frac{-\left(-63\right)±189}{2\times 147}
Take the square root of 35721.
x=\frac{63±189}{2\times 147}
The opposite of -63 is 63.
x=\frac{63±189}{294}
Multiply 2 times 147.
x=\frac{252}{294}
Now solve the equation x=\frac{63±189}{294} when ± is plus. Add 63 to 189.
x=\frac{6}{7}
Reduce the fraction \frac{252}{294} to lowest terms by extracting and canceling out 42.
x=-\frac{126}{294}
Now solve the equation x=\frac{63±189}{294} when ± is minus. Subtract 189 from 63.
x=-\frac{3}{7}
Reduce the fraction \frac{-126}{294} to lowest terms by extracting and canceling out 42.
x=\frac{6}{7} x=-\frac{3}{7}
The equation is now solved.
147x^{2}-63x=54
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{147x^{2}-63x}{147}=\frac{54}{147}
Divide both sides by 147.
x^{2}+\left(-\frac{63}{147}\right)x=\frac{54}{147}
Dividing by 147 undoes the multiplication by 147.
x^{2}-\frac{3}{7}x=\frac{54}{147}
Reduce the fraction \frac{-63}{147} to lowest terms by extracting and canceling out 21.
x^{2}-\frac{3}{7}x=\frac{18}{49}
Reduce the fraction \frac{54}{147} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{3}{7}x+\left(-\frac{3}{14}\right)^{2}=\frac{18}{49}+\left(-\frac{3}{14}\right)^{2}
Divide -\frac{3}{7}, the coefficient of the x term, by 2 to get -\frac{3}{14}. Then add the square of -\frac{3}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{7}x+\frac{9}{196}=\frac{18}{49}+\frac{9}{196}
Square -\frac{3}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{7}x+\frac{9}{196}=\frac{81}{196}
Add \frac{18}{49} to \frac{9}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{14}\right)^{2}=\frac{81}{196}
Factor x^{2}-\frac{3}{7}x+\frac{9}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{14}\right)^{2}}=\sqrt{\frac{81}{196}}
Take the square root of both sides of the equation.
x-\frac{3}{14}=\frac{9}{14} x-\frac{3}{14}=-\frac{9}{14}
Simplify.
x=\frac{6}{7} x=-\frac{3}{7}
Add \frac{3}{14} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}