Evaluate
\frac{147}{19}\approx 7.736842105
Factor
\frac{3 \cdot 7 ^ {2}}{19} = 7\frac{14}{19} = 7.7368421052631575
Share
Copied to clipboard
\begin{array}{l}\phantom{19)}\phantom{1}\\19\overline{)147}\\\end{array}
Use the 1^{st} digit 1 from dividend 147
\begin{array}{l}\phantom{19)}0\phantom{2}\\19\overline{)147}\\\end{array}
Since 1 is less than 19, use the next digit 4 from dividend 147 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0\phantom{3}\\19\overline{)147}\\\end{array}
Use the 2^{nd} digit 4 from dividend 147
\begin{array}{l}\phantom{19)}00\phantom{4}\\19\overline{)147}\\\end{array}
Since 14 is less than 19, use the next digit 7 from dividend 147 and add 0 to the quotient
\begin{array}{l}\phantom{19)}00\phantom{5}\\19\overline{)147}\\\end{array}
Use the 3^{rd} digit 7 from dividend 147
\begin{array}{l}\phantom{19)}007\phantom{6}\\19\overline{)147}\\\phantom{19)}\underline{\phantom{}133\phantom{}}\\\phantom{19)9}14\\\end{array}
Find closest multiple of 19 to 147. We see that 7 \times 19 = 133 is the nearest. Now subtract 133 from 147 to get reminder 14. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }14
Since 14 is less than 19, stop the division. The reminder is 14. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}