Solve for L
L=270
Share
Copied to clipboard
-2L^{2}+1080L=145800
Swap sides so that all variable terms are on the left hand side.
-2L^{2}+1080L-145800=0
Subtract 145800 from both sides.
L=\frac{-1080±\sqrt{1080^{2}-4\left(-2\right)\left(-145800\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 1080 for b, and -145800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
L=\frac{-1080±\sqrt{1166400-4\left(-2\right)\left(-145800\right)}}{2\left(-2\right)}
Square 1080.
L=\frac{-1080±\sqrt{1166400+8\left(-145800\right)}}{2\left(-2\right)}
Multiply -4 times -2.
L=\frac{-1080±\sqrt{1166400-1166400}}{2\left(-2\right)}
Multiply 8 times -145800.
L=\frac{-1080±\sqrt{0}}{2\left(-2\right)}
Add 1166400 to -1166400.
L=-\frac{1080}{2\left(-2\right)}
Take the square root of 0.
L=-\frac{1080}{-4}
Multiply 2 times -2.
L=270
Divide -1080 by -4.
-2L^{2}+1080L=145800
Swap sides so that all variable terms are on the left hand side.
\frac{-2L^{2}+1080L}{-2}=\frac{145800}{-2}
Divide both sides by -2.
L^{2}+\frac{1080}{-2}L=\frac{145800}{-2}
Dividing by -2 undoes the multiplication by -2.
L^{2}-540L=\frac{145800}{-2}
Divide 1080 by -2.
L^{2}-540L=-72900
Divide 145800 by -2.
L^{2}-540L+\left(-270\right)^{2}=-72900+\left(-270\right)^{2}
Divide -540, the coefficient of the x term, by 2 to get -270. Then add the square of -270 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
L^{2}-540L+72900=-72900+72900
Square -270.
L^{2}-540L+72900=0
Add -72900 to 72900.
\left(L-270\right)^{2}=0
Factor L^{2}-540L+72900. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(L-270\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
L-270=0 L-270=0
Simplify.
L=270 L=270
Add 270 to both sides of the equation.
L=270
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}