Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1456.875+735x-29000x^{2}=0
Subtract 29000x^{2} from both sides.
-29000x^{2}+735x+1456.875=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-735±\sqrt{735^{2}-4\left(-29000\right)\times 1456.875}}{2\left(-29000\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -29000 for a, 735 for b, and 1456.875 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-735±\sqrt{540225-4\left(-29000\right)\times 1456.875}}{2\left(-29000\right)}
Square 735.
x=\frac{-735±\sqrt{540225+116000\times 1456.875}}{2\left(-29000\right)}
Multiply -4 times -29000.
x=\frac{-735±\sqrt{540225+168997500}}{2\left(-29000\right)}
Multiply 116000 times 1456.875.
x=\frac{-735±\sqrt{169537725}}{2\left(-29000\right)}
Add 540225 to 168997500.
x=\frac{-735±15\sqrt{753501}}{2\left(-29000\right)}
Take the square root of 169537725.
x=\frac{-735±15\sqrt{753501}}{-58000}
Multiply 2 times -29000.
x=\frac{15\sqrt{753501}-735}{-58000}
Now solve the equation x=\frac{-735±15\sqrt{753501}}{-58000} when ± is plus. Add -735 to 15\sqrt{753501}.
x=\frac{147-3\sqrt{753501}}{11600}
Divide -735+15\sqrt{753501} by -58000.
x=\frac{-15\sqrt{753501}-735}{-58000}
Now solve the equation x=\frac{-735±15\sqrt{753501}}{-58000} when ± is minus. Subtract 15\sqrt{753501} from -735.
x=\frac{3\sqrt{753501}+147}{11600}
Divide -735-15\sqrt{753501} by -58000.
x=\frac{147-3\sqrt{753501}}{11600} x=\frac{3\sqrt{753501}+147}{11600}
The equation is now solved.
1456.875+735x-29000x^{2}=0
Subtract 29000x^{2} from both sides.
735x-29000x^{2}=-1456.875
Subtract 1456.875 from both sides. Anything subtracted from zero gives its negation.
-29000x^{2}+735x=-1456.875
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-29000x^{2}+735x}{-29000}=-\frac{1456.875}{-29000}
Divide both sides by -29000.
x^{2}+\frac{735}{-29000}x=-\frac{1456.875}{-29000}
Dividing by -29000 undoes the multiplication by -29000.
x^{2}-\frac{147}{5800}x=-\frac{1456.875}{-29000}
Reduce the fraction \frac{735}{-29000} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{147}{5800}x=\frac{2331}{46400}
Divide -1456.875 by -29000.
x^{2}-\frac{147}{5800}x+\left(-\frac{147}{11600}\right)^{2}=\frac{2331}{46400}+\left(-\frac{147}{11600}\right)^{2}
Divide -\frac{147}{5800}, the coefficient of the x term, by 2 to get -\frac{147}{11600}. Then add the square of -\frac{147}{11600} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{147}{5800}x+\frac{21609}{134560000}=\frac{2331}{46400}+\frac{21609}{134560000}
Square -\frac{147}{11600} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{147}{5800}x+\frac{21609}{134560000}=\frac{6781509}{134560000}
Add \frac{2331}{46400} to \frac{21609}{134560000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{147}{11600}\right)^{2}=\frac{6781509}{134560000}
Factor x^{2}-\frac{147}{5800}x+\frac{21609}{134560000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{147}{11600}\right)^{2}}=\sqrt{\frac{6781509}{134560000}}
Take the square root of both sides of the equation.
x-\frac{147}{11600}=\frac{3\sqrt{753501}}{11600} x-\frac{147}{11600}=-\frac{3\sqrt{753501}}{11600}
Simplify.
x=\frac{3\sqrt{753501}+147}{11600} x=\frac{147-3\sqrt{753501}}{11600}
Add \frac{147}{11600} to both sides of the equation.