Evaluate
\frac{29}{2}=14.5
Factor
\frac{29}{2} = 14\frac{1}{2} = 14.5
Share
Copied to clipboard
\begin{array}{l}\phantom{10)}\phantom{1}\\10\overline{)145}\\\end{array}
Use the 1^{st} digit 1 from dividend 145
\begin{array}{l}\phantom{10)}0\phantom{2}\\10\overline{)145}\\\end{array}
Since 1 is less than 10, use the next digit 4 from dividend 145 and add 0 to the quotient
\begin{array}{l}\phantom{10)}0\phantom{3}\\10\overline{)145}\\\end{array}
Use the 2^{nd} digit 4 from dividend 145
\begin{array}{l}\phantom{10)}01\phantom{4}\\10\overline{)145}\\\phantom{10)}\underline{\phantom{}10\phantom{9}}\\\phantom{10)9}4\\\end{array}
Find closest multiple of 10 to 14. We see that 1 \times 10 = 10 is the nearest. Now subtract 10 from 14 to get reminder 4. Add 1 to quotient.
\begin{array}{l}\phantom{10)}01\phantom{5}\\10\overline{)145}\\\phantom{10)}\underline{\phantom{}10\phantom{9}}\\\phantom{10)9}45\\\end{array}
Use the 3^{rd} digit 5 from dividend 145
\begin{array}{l}\phantom{10)}014\phantom{6}\\10\overline{)145}\\\phantom{10)}\underline{\phantom{}10\phantom{9}}\\\phantom{10)9}45\\\phantom{10)}\underline{\phantom{9}40\phantom{}}\\\phantom{10)99}5\\\end{array}
Find closest multiple of 10 to 45. We see that 4 \times 10 = 40 is the nearest. Now subtract 40 from 45 to get reminder 5. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }5
Since 5 is less than 10, stop the division. The reminder is 5. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}