Evaluate
\frac{26809}{180}\approx 148.938888889
Factor
\frac{17 \cdot 19 \cdot 83}{2 ^ {2} \cdot 3 ^ {2} \cdot 5} = 148\frac{169}{180} = 148.9388888888889
Share
Copied to clipboard
145+\frac{420+7}{60}-\frac{3\times 45+8}{45}
Multiply 7 and 60 to get 420.
145+\frac{427}{60}-\frac{3\times 45+8}{45}
Add 420 and 7 to get 427.
\frac{8700}{60}+\frac{427}{60}-\frac{3\times 45+8}{45}
Convert 145 to fraction \frac{8700}{60}.
\frac{8700+427}{60}-\frac{3\times 45+8}{45}
Since \frac{8700}{60} and \frac{427}{60} have the same denominator, add them by adding their numerators.
\frac{9127}{60}-\frac{3\times 45+8}{45}
Add 8700 and 427 to get 9127.
\frac{9127}{60}-\frac{135+8}{45}
Multiply 3 and 45 to get 135.
\frac{9127}{60}-\frac{143}{45}
Add 135 and 8 to get 143.
\frac{27381}{180}-\frac{572}{180}
Least common multiple of 60 and 45 is 180. Convert \frac{9127}{60} and \frac{143}{45} to fractions with denominator 180.
\frac{27381-572}{180}
Since \frac{27381}{180} and \frac{572}{180} have the same denominator, subtract them by subtracting their numerators.
\frac{26809}{180}
Subtract 572 from 27381 to get 26809.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}