Solve for x
x = \frac{\sqrt{140689} + 8}{25} \approx 15.323412945
x=\frac{8-\sqrt{140689}}{25}\approx -14.683412945
Graph
Share
Copied to clipboard
144x-225x^{2}=-50625
Subtract 225x^{2} from both sides.
144x-225x^{2}+50625=0
Add 50625 to both sides.
-225x^{2}+144x+50625=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-144±\sqrt{144^{2}-4\left(-225\right)\times 50625}}{2\left(-225\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -225 for a, 144 for b, and 50625 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-144±\sqrt{20736-4\left(-225\right)\times 50625}}{2\left(-225\right)}
Square 144.
x=\frac{-144±\sqrt{20736+900\times 50625}}{2\left(-225\right)}
Multiply -4 times -225.
x=\frac{-144±\sqrt{20736+45562500}}{2\left(-225\right)}
Multiply 900 times 50625.
x=\frac{-144±\sqrt{45583236}}{2\left(-225\right)}
Add 20736 to 45562500.
x=\frac{-144±18\sqrt{140689}}{2\left(-225\right)}
Take the square root of 45583236.
x=\frac{-144±18\sqrt{140689}}{-450}
Multiply 2 times -225.
x=\frac{18\sqrt{140689}-144}{-450}
Now solve the equation x=\frac{-144±18\sqrt{140689}}{-450} when ± is plus. Add -144 to 18\sqrt{140689}.
x=\frac{8-\sqrt{140689}}{25}
Divide -144+18\sqrt{140689} by -450.
x=\frac{-18\sqrt{140689}-144}{-450}
Now solve the equation x=\frac{-144±18\sqrt{140689}}{-450} when ± is minus. Subtract 18\sqrt{140689} from -144.
x=\frac{\sqrt{140689}+8}{25}
Divide -144-18\sqrt{140689} by -450.
x=\frac{8-\sqrt{140689}}{25} x=\frac{\sqrt{140689}+8}{25}
The equation is now solved.
144x-225x^{2}=-50625
Subtract 225x^{2} from both sides.
-225x^{2}+144x=-50625
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-225x^{2}+144x}{-225}=-\frac{50625}{-225}
Divide both sides by -225.
x^{2}+\frac{144}{-225}x=-\frac{50625}{-225}
Dividing by -225 undoes the multiplication by -225.
x^{2}-\frac{16}{25}x=-\frac{50625}{-225}
Reduce the fraction \frac{144}{-225} to lowest terms by extracting and canceling out 9.
x^{2}-\frac{16}{25}x=225
Divide -50625 by -225.
x^{2}-\frac{16}{25}x+\left(-\frac{8}{25}\right)^{2}=225+\left(-\frac{8}{25}\right)^{2}
Divide -\frac{16}{25}, the coefficient of the x term, by 2 to get -\frac{8}{25}. Then add the square of -\frac{8}{25} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{16}{25}x+\frac{64}{625}=225+\frac{64}{625}
Square -\frac{8}{25} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{16}{25}x+\frac{64}{625}=\frac{140689}{625}
Add 225 to \frac{64}{625}.
\left(x-\frac{8}{25}\right)^{2}=\frac{140689}{625}
Factor x^{2}-\frac{16}{25}x+\frac{64}{625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{8}{25}\right)^{2}}=\sqrt{\frac{140689}{625}}
Take the square root of both sides of the equation.
x-\frac{8}{25}=\frac{\sqrt{140689}}{25} x-\frac{8}{25}=-\frac{\sqrt{140689}}{25}
Simplify.
x=\frac{\sqrt{140689}+8}{25} x=\frac{8-\sqrt{140689}}{25}
Add \frac{8}{25} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}