Evaluate
\frac{14400}{11}\approx 1309.090909091
Factor
\frac{2 ^ {6} \cdot 3 ^ {2} \cdot 5 ^ {2}}{11} = 1309\frac{1}{11} = 1309.090909090909
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)14400}\\\end{array}
Use the 1^{st} digit 1 from dividend 14400
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)14400}\\\end{array}
Since 1 is less than 11, use the next digit 4 from dividend 14400 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)14400}\\\end{array}
Use the 2^{nd} digit 4 from dividend 14400
\begin{array}{l}\phantom{11)}01\phantom{4}\\11\overline{)14400}\\\phantom{11)}\underline{\phantom{}11\phantom{999}}\\\phantom{11)9}3\\\end{array}
Find closest multiple of 11 to 14. We see that 1 \times 11 = 11 is the nearest. Now subtract 11 from 14 to get reminder 3. Add 1 to quotient.
\begin{array}{l}\phantom{11)}01\phantom{5}\\11\overline{)14400}\\\phantom{11)}\underline{\phantom{}11\phantom{999}}\\\phantom{11)9}34\\\end{array}
Use the 3^{rd} digit 4 from dividend 14400
\begin{array}{l}\phantom{11)}013\phantom{6}\\11\overline{)14400}\\\phantom{11)}\underline{\phantom{}11\phantom{999}}\\\phantom{11)9}34\\\phantom{11)}\underline{\phantom{9}33\phantom{99}}\\\phantom{11)99}1\\\end{array}
Find closest multiple of 11 to 34. We see that 3 \times 11 = 33 is the nearest. Now subtract 33 from 34 to get reminder 1. Add 3 to quotient.
\begin{array}{l}\phantom{11)}013\phantom{7}\\11\overline{)14400}\\\phantom{11)}\underline{\phantom{}11\phantom{999}}\\\phantom{11)9}34\\\phantom{11)}\underline{\phantom{9}33\phantom{99}}\\\phantom{11)99}10\\\end{array}
Use the 4^{th} digit 0 from dividend 14400
\begin{array}{l}\phantom{11)}0130\phantom{8}\\11\overline{)14400}\\\phantom{11)}\underline{\phantom{}11\phantom{999}}\\\phantom{11)9}34\\\phantom{11)}\underline{\phantom{9}33\phantom{99}}\\\phantom{11)99}10\\\end{array}
Since 10 is less than 11, use the next digit 0 from dividend 14400 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0130\phantom{9}\\11\overline{)14400}\\\phantom{11)}\underline{\phantom{}11\phantom{999}}\\\phantom{11)9}34\\\phantom{11)}\underline{\phantom{9}33\phantom{99}}\\\phantom{11)99}100\\\end{array}
Use the 5^{th} digit 0 from dividend 14400
\begin{array}{l}\phantom{11)}01309\phantom{10}\\11\overline{)14400}\\\phantom{11)}\underline{\phantom{}11\phantom{999}}\\\phantom{11)9}34\\\phantom{11)}\underline{\phantom{9}33\phantom{99}}\\\phantom{11)99}100\\\phantom{11)}\underline{\phantom{999}99\phantom{}}\\\phantom{11)9999}1\\\end{array}
Find closest multiple of 11 to 100. We see that 9 \times 11 = 99 is the nearest. Now subtract 99 from 100 to get reminder 1. Add 9 to quotient.
\text{Quotient: }1309 \text{Reminder: }1
Since 1 is less than 11, stop the division. The reminder is 1. The topmost line 01309 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1309.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}