Evaluate
\frac{72}{55}\approx 1.309090909
Factor
\frac{2 ^ {3} \cdot 3 ^ {2}}{5 \cdot 11} = 1\frac{17}{55} = 1.309090909090909
Share
Copied to clipboard
\begin{array}{l}\phantom{1100)}\phantom{1}\\1100\overline{)1440}\\\end{array}
Use the 1^{st} digit 1 from dividend 1440
\begin{array}{l}\phantom{1100)}0\phantom{2}\\1100\overline{)1440}\\\end{array}
Since 1 is less than 1100, use the next digit 4 from dividend 1440 and add 0 to the quotient
\begin{array}{l}\phantom{1100)}0\phantom{3}\\1100\overline{)1440}\\\end{array}
Use the 2^{nd} digit 4 from dividend 1440
\begin{array}{l}\phantom{1100)}00\phantom{4}\\1100\overline{)1440}\\\end{array}
Since 14 is less than 1100, use the next digit 4 from dividend 1440 and add 0 to the quotient
\begin{array}{l}\phantom{1100)}00\phantom{5}\\1100\overline{)1440}\\\end{array}
Use the 3^{rd} digit 4 from dividend 1440
\begin{array}{l}\phantom{1100)}000\phantom{6}\\1100\overline{)1440}\\\end{array}
Since 144 is less than 1100, use the next digit 0 from dividend 1440 and add 0 to the quotient
\begin{array}{l}\phantom{1100)}000\phantom{7}\\1100\overline{)1440}\\\end{array}
Use the 4^{th} digit 0 from dividend 1440
\begin{array}{l}\phantom{1100)}0001\phantom{8}\\1100\overline{)1440}\\\phantom{1100)}\underline{\phantom{}1100\phantom{}}\\\phantom{1100)9}340\\\end{array}
Find closest multiple of 1100 to 1440. We see that 1 \times 1100 = 1100 is the nearest. Now subtract 1100 from 1440 to get reminder 340. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }340
Since 340 is less than 1100, stop the division. The reminder is 340. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}