Evaluate
\frac{144}{11}\approx 13.090909091
Factor
\frac{2 ^ {4} \cdot 3 ^ {2}}{11} = 13\frac{1}{11} = 13.090909090909092
Share
Copied to clipboard
\begin{array}{l}\phantom{110)}\phantom{1}\\110\overline{)1440}\\\end{array}
Use the 1^{st} digit 1 from dividend 1440
\begin{array}{l}\phantom{110)}0\phantom{2}\\110\overline{)1440}\\\end{array}
Since 1 is less than 110, use the next digit 4 from dividend 1440 and add 0 to the quotient
\begin{array}{l}\phantom{110)}0\phantom{3}\\110\overline{)1440}\\\end{array}
Use the 2^{nd} digit 4 from dividend 1440
\begin{array}{l}\phantom{110)}00\phantom{4}\\110\overline{)1440}\\\end{array}
Since 14 is less than 110, use the next digit 4 from dividend 1440 and add 0 to the quotient
\begin{array}{l}\phantom{110)}00\phantom{5}\\110\overline{)1440}\\\end{array}
Use the 3^{rd} digit 4 from dividend 1440
\begin{array}{l}\phantom{110)}001\phantom{6}\\110\overline{)1440}\\\phantom{110)}\underline{\phantom{}110\phantom{9}}\\\phantom{110)9}34\\\end{array}
Find closest multiple of 110 to 144. We see that 1 \times 110 = 110 is the nearest. Now subtract 110 from 144 to get reminder 34. Add 1 to quotient.
\begin{array}{l}\phantom{110)}001\phantom{7}\\110\overline{)1440}\\\phantom{110)}\underline{\phantom{}110\phantom{9}}\\\phantom{110)9}340\\\end{array}
Use the 4^{th} digit 0 from dividend 1440
\begin{array}{l}\phantom{110)}0013\phantom{8}\\110\overline{)1440}\\\phantom{110)}\underline{\phantom{}110\phantom{9}}\\\phantom{110)9}340\\\phantom{110)}\underline{\phantom{9}330\phantom{}}\\\phantom{110)99}10\\\end{array}
Find closest multiple of 110 to 340. We see that 3 \times 110 = 330 is the nearest. Now subtract 330 from 340 to get reminder 10. Add 3 to quotient.
\text{Quotient: }13 \text{Reminder: }10
Since 10 is less than 110, stop the division. The reminder is 10. The topmost line 0013 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}