Evaluate
\frac{8}{5}=1.6
Factor
\frac{2 ^ {3}}{5} = 1\frac{3}{5} = 1.6
Share
Copied to clipboard
\begin{array}{l}\phantom{900)}\phantom{1}\\900\overline{)1440}\\\end{array}
Use the 1^{st} digit 1 from dividend 1440
\begin{array}{l}\phantom{900)}0\phantom{2}\\900\overline{)1440}\\\end{array}
Since 1 is less than 900, use the next digit 4 from dividend 1440 and add 0 to the quotient
\begin{array}{l}\phantom{900)}0\phantom{3}\\900\overline{)1440}\\\end{array}
Use the 2^{nd} digit 4 from dividend 1440
\begin{array}{l}\phantom{900)}00\phantom{4}\\900\overline{)1440}\\\end{array}
Since 14 is less than 900, use the next digit 4 from dividend 1440 and add 0 to the quotient
\begin{array}{l}\phantom{900)}00\phantom{5}\\900\overline{)1440}\\\end{array}
Use the 3^{rd} digit 4 from dividend 1440
\begin{array}{l}\phantom{900)}000\phantom{6}\\900\overline{)1440}\\\end{array}
Since 144 is less than 900, use the next digit 0 from dividend 1440 and add 0 to the quotient
\begin{array}{l}\phantom{900)}000\phantom{7}\\900\overline{)1440}\\\end{array}
Use the 4^{th} digit 0 from dividend 1440
\begin{array}{l}\phantom{900)}0001\phantom{8}\\900\overline{)1440}\\\phantom{900)}\underline{\phantom{9}900\phantom{}}\\\phantom{900)9}540\\\end{array}
Find closest multiple of 900 to 1440. We see that 1 \times 900 = 900 is the nearest. Now subtract 900 from 1440 to get reminder 540. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }540
Since 540 is less than 900, stop the division. The reminder is 540. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}