Evaluate
\frac{36035}{3}\approx 12011.666666667
Factor
\frac{5 \cdot 7207}{3} = 12011\frac{2}{3} = 12011.666666666666
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)144140}\\\end{array}
Use the 1^{st} digit 1 from dividend 144140
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)144140}\\\end{array}
Since 1 is less than 12, use the next digit 4 from dividend 144140 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)144140}\\\end{array}
Use the 2^{nd} digit 4 from dividend 144140
\begin{array}{l}\phantom{12)}01\phantom{4}\\12\overline{)144140}\\\phantom{12)}\underline{\phantom{}12\phantom{9999}}\\\phantom{12)9}2\\\end{array}
Find closest multiple of 12 to 14. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 14 to get reminder 2. Add 1 to quotient.
\begin{array}{l}\phantom{12)}01\phantom{5}\\12\overline{)144140}\\\phantom{12)}\underline{\phantom{}12\phantom{9999}}\\\phantom{12)9}24\\\end{array}
Use the 3^{rd} digit 4 from dividend 144140
\begin{array}{l}\phantom{12)}012\phantom{6}\\12\overline{)144140}\\\phantom{12)}\underline{\phantom{}12\phantom{9999}}\\\phantom{12)9}24\\\phantom{12)}\underline{\phantom{9}24\phantom{999}}\\\phantom{12)999}0\\\end{array}
Find closest multiple of 12 to 24. We see that 2 \times 12 = 24 is the nearest. Now subtract 24 from 24 to get reminder 0. Add 2 to quotient.
\begin{array}{l}\phantom{12)}012\phantom{7}\\12\overline{)144140}\\\phantom{12)}\underline{\phantom{}12\phantom{9999}}\\\phantom{12)9}24\\\phantom{12)}\underline{\phantom{9}24\phantom{999}}\\\phantom{12)999}1\\\end{array}
Use the 4^{th} digit 1 from dividend 144140
\begin{array}{l}\phantom{12)}0120\phantom{8}\\12\overline{)144140}\\\phantom{12)}\underline{\phantom{}12\phantom{9999}}\\\phantom{12)9}24\\\phantom{12)}\underline{\phantom{9}24\phantom{999}}\\\phantom{12)999}1\\\end{array}
Since 1 is less than 12, use the next digit 4 from dividend 144140 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0120\phantom{9}\\12\overline{)144140}\\\phantom{12)}\underline{\phantom{}12\phantom{9999}}\\\phantom{12)9}24\\\phantom{12)}\underline{\phantom{9}24\phantom{999}}\\\phantom{12)999}14\\\end{array}
Use the 5^{th} digit 4 from dividend 144140
\begin{array}{l}\phantom{12)}01201\phantom{10}\\12\overline{)144140}\\\phantom{12)}\underline{\phantom{}12\phantom{9999}}\\\phantom{12)9}24\\\phantom{12)}\underline{\phantom{9}24\phantom{999}}\\\phantom{12)999}14\\\phantom{12)}\underline{\phantom{999}12\phantom{9}}\\\phantom{12)9999}2\\\end{array}
Find closest multiple of 12 to 14. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 14 to get reminder 2. Add 1 to quotient.
\begin{array}{l}\phantom{12)}01201\phantom{11}\\12\overline{)144140}\\\phantom{12)}\underline{\phantom{}12\phantom{9999}}\\\phantom{12)9}24\\\phantom{12)}\underline{\phantom{9}24\phantom{999}}\\\phantom{12)999}14\\\phantom{12)}\underline{\phantom{999}12\phantom{9}}\\\phantom{12)9999}20\\\end{array}
Use the 6^{th} digit 0 from dividend 144140
\begin{array}{l}\phantom{12)}012011\phantom{12}\\12\overline{)144140}\\\phantom{12)}\underline{\phantom{}12\phantom{9999}}\\\phantom{12)9}24\\\phantom{12)}\underline{\phantom{9}24\phantom{999}}\\\phantom{12)999}14\\\phantom{12)}\underline{\phantom{999}12\phantom{9}}\\\phantom{12)9999}20\\\phantom{12)}\underline{\phantom{9999}12\phantom{}}\\\phantom{12)99999}8\\\end{array}
Find closest multiple of 12 to 20. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 20 to get reminder 8. Add 1 to quotient.
\text{Quotient: }12011 \text{Reminder: }8
Since 8 is less than 12, stop the division. The reminder is 8. The topmost line 012011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12011.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}