Solve for x
x = \frac{2 \sqrt{31} + 4}{9} \approx 1.681725414
x=\frac{4-2\sqrt{31}}{9}\approx -0.792836525
Graph
Share
Copied to clipboard
144x^{2}-128x+64=256
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
144x^{2}-128x+64-256=256-256
Subtract 256 from both sides of the equation.
144x^{2}-128x+64-256=0
Subtracting 256 from itself leaves 0.
144x^{2}-128x-192=0
Subtract 256 from 64.
x=\frac{-\left(-128\right)±\sqrt{\left(-128\right)^{2}-4\times 144\left(-192\right)}}{2\times 144}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 144 for a, -128 for b, and -192 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-128\right)±\sqrt{16384-4\times 144\left(-192\right)}}{2\times 144}
Square -128.
x=\frac{-\left(-128\right)±\sqrt{16384-576\left(-192\right)}}{2\times 144}
Multiply -4 times 144.
x=\frac{-\left(-128\right)±\sqrt{16384+110592}}{2\times 144}
Multiply -576 times -192.
x=\frac{-\left(-128\right)±\sqrt{126976}}{2\times 144}
Add 16384 to 110592.
x=\frac{-\left(-128\right)±64\sqrt{31}}{2\times 144}
Take the square root of 126976.
x=\frac{128±64\sqrt{31}}{2\times 144}
The opposite of -128 is 128.
x=\frac{128±64\sqrt{31}}{288}
Multiply 2 times 144.
x=\frac{64\sqrt{31}+128}{288}
Now solve the equation x=\frac{128±64\sqrt{31}}{288} when ± is plus. Add 128 to 64\sqrt{31}.
x=\frac{2\sqrt{31}+4}{9}
Divide 128+64\sqrt{31} by 288.
x=\frac{128-64\sqrt{31}}{288}
Now solve the equation x=\frac{128±64\sqrt{31}}{288} when ± is minus. Subtract 64\sqrt{31} from 128.
x=\frac{4-2\sqrt{31}}{9}
Divide 128-64\sqrt{31} by 288.
x=\frac{2\sqrt{31}+4}{9} x=\frac{4-2\sqrt{31}}{9}
The equation is now solved.
144x^{2}-128x+64=256
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
144x^{2}-128x+64-64=256-64
Subtract 64 from both sides of the equation.
144x^{2}-128x=256-64
Subtracting 64 from itself leaves 0.
144x^{2}-128x=192
Subtract 64 from 256.
\frac{144x^{2}-128x}{144}=\frac{192}{144}
Divide both sides by 144.
x^{2}+\left(-\frac{128}{144}\right)x=\frac{192}{144}
Dividing by 144 undoes the multiplication by 144.
x^{2}-\frac{8}{9}x=\frac{192}{144}
Reduce the fraction \frac{-128}{144} to lowest terms by extracting and canceling out 16.
x^{2}-\frac{8}{9}x=\frac{4}{3}
Reduce the fraction \frac{192}{144} to lowest terms by extracting and canceling out 48.
x^{2}-\frac{8}{9}x+\left(-\frac{4}{9}\right)^{2}=\frac{4}{3}+\left(-\frac{4}{9}\right)^{2}
Divide -\frac{8}{9}, the coefficient of the x term, by 2 to get -\frac{4}{9}. Then add the square of -\frac{4}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{9}x+\frac{16}{81}=\frac{4}{3}+\frac{16}{81}
Square -\frac{4}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{9}x+\frac{16}{81}=\frac{124}{81}
Add \frac{4}{3} to \frac{16}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{9}\right)^{2}=\frac{124}{81}
Factor x^{2}-\frac{8}{9}x+\frac{16}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{9}\right)^{2}}=\sqrt{\frac{124}{81}}
Take the square root of both sides of the equation.
x-\frac{4}{9}=\frac{2\sqrt{31}}{9} x-\frac{4}{9}=-\frac{2\sqrt{31}}{9}
Simplify.
x=\frac{2\sqrt{31}+4}{9} x=\frac{4-2\sqrt{31}}{9}
Add \frac{4}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}