Evaluate
\frac{144}{25}=5.76
Factor
\frac{2 ^ {4} \cdot 3 ^ {2}}{5 ^ {2}} = 5\frac{19}{25} = 5.76
Share
Copied to clipboard
\begin{array}{l}\phantom{25)}\phantom{1}\\25\overline{)144}\\\end{array}
Use the 1^{st} digit 1 from dividend 144
\begin{array}{l}\phantom{25)}0\phantom{2}\\25\overline{)144}\\\end{array}
Since 1 is less than 25, use the next digit 4 from dividend 144 and add 0 to the quotient
\begin{array}{l}\phantom{25)}0\phantom{3}\\25\overline{)144}\\\end{array}
Use the 2^{nd} digit 4 from dividend 144
\begin{array}{l}\phantom{25)}00\phantom{4}\\25\overline{)144}\\\end{array}
Since 14 is less than 25, use the next digit 4 from dividend 144 and add 0 to the quotient
\begin{array}{l}\phantom{25)}00\phantom{5}\\25\overline{)144}\\\end{array}
Use the 3^{rd} digit 4 from dividend 144
\begin{array}{l}\phantom{25)}005\phantom{6}\\25\overline{)144}\\\phantom{25)}\underline{\phantom{}125\phantom{}}\\\phantom{25)9}19\\\end{array}
Find closest multiple of 25 to 144. We see that 5 \times 25 = 125 is the nearest. Now subtract 125 from 144 to get reminder 19. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }19
Since 19 is less than 25, stop the division. The reminder is 19. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}