Evaluate
\frac{144}{13}\approx 11.076923077
Factor
\frac{2 ^ {4} \cdot 3 ^ {2}}{13} = 11\frac{1}{13} = 11.076923076923077
Share
Copied to clipboard
\begin{array}{l}\phantom{13)}\phantom{1}\\13\overline{)144}\\\end{array}
Use the 1^{st} digit 1 from dividend 144
\begin{array}{l}\phantom{13)}0\phantom{2}\\13\overline{)144}\\\end{array}
Since 1 is less than 13, use the next digit 4 from dividend 144 and add 0 to the quotient
\begin{array}{l}\phantom{13)}0\phantom{3}\\13\overline{)144}\\\end{array}
Use the 2^{nd} digit 4 from dividend 144
\begin{array}{l}\phantom{13)}01\phantom{4}\\13\overline{)144}\\\phantom{13)}\underline{\phantom{}13\phantom{9}}\\\phantom{13)9}1\\\end{array}
Find closest multiple of 13 to 14. We see that 1 \times 13 = 13 is the nearest. Now subtract 13 from 14 to get reminder 1. Add 1 to quotient.
\begin{array}{l}\phantom{13)}01\phantom{5}\\13\overline{)144}\\\phantom{13)}\underline{\phantom{}13\phantom{9}}\\\phantom{13)9}14\\\end{array}
Use the 3^{rd} digit 4 from dividend 144
\begin{array}{l}\phantom{13)}011\phantom{6}\\13\overline{)144}\\\phantom{13)}\underline{\phantom{}13\phantom{9}}\\\phantom{13)9}14\\\phantom{13)}\underline{\phantom{9}13\phantom{}}\\\phantom{13)99}1\\\end{array}
Find closest multiple of 13 to 14. We see that 1 \times 13 = 13 is the nearest. Now subtract 13 from 14 to get reminder 1. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }1
Since 1 is less than 13, stop the division. The reminder is 1. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}