Evaluate
\frac{36}{25}=1.44
Factor
\frac{2 ^ {2} \cdot 3 ^ {2}}{5 ^ {2}} = 1\frac{11}{25} = 1.44
Share
Copied to clipboard
\begin{array}{l}\phantom{100)}\phantom{1}\\100\overline{)144}\\\end{array}
Use the 1^{st} digit 1 from dividend 144
\begin{array}{l}\phantom{100)}0\phantom{2}\\100\overline{)144}\\\end{array}
Since 1 is less than 100, use the next digit 4 from dividend 144 and add 0 to the quotient
\begin{array}{l}\phantom{100)}0\phantom{3}\\100\overline{)144}\\\end{array}
Use the 2^{nd} digit 4 from dividend 144
\begin{array}{l}\phantom{100)}00\phantom{4}\\100\overline{)144}\\\end{array}
Since 14 is less than 100, use the next digit 4 from dividend 144 and add 0 to the quotient
\begin{array}{l}\phantom{100)}00\phantom{5}\\100\overline{)144}\\\end{array}
Use the 3^{rd} digit 4 from dividend 144
\begin{array}{l}\phantom{100)}001\phantom{6}\\100\overline{)144}\\\phantom{100)}\underline{\phantom{}100\phantom{}}\\\phantom{100)9}44\\\end{array}
Find closest multiple of 100 to 144. We see that 1 \times 100 = 100 is the nearest. Now subtract 100 from 144 to get reminder 44. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }44
Since 44 is less than 100, stop the division. The reminder is 44. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}