Solve for c
c=8
c=18
Share
Copied to clipboard
144=26c-c^{2}
Use the distributive property to multiply 26-c by c.
26c-c^{2}=144
Swap sides so that all variable terms are on the left hand side.
26c-c^{2}-144=0
Subtract 144 from both sides.
-c^{2}+26c-144=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c=\frac{-26±\sqrt{26^{2}-4\left(-1\right)\left(-144\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 26 for b, and -144 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-26±\sqrt{676-4\left(-1\right)\left(-144\right)}}{2\left(-1\right)}
Square 26.
c=\frac{-26±\sqrt{676+4\left(-144\right)}}{2\left(-1\right)}
Multiply -4 times -1.
c=\frac{-26±\sqrt{676-576}}{2\left(-1\right)}
Multiply 4 times -144.
c=\frac{-26±\sqrt{100}}{2\left(-1\right)}
Add 676 to -576.
c=\frac{-26±10}{2\left(-1\right)}
Take the square root of 100.
c=\frac{-26±10}{-2}
Multiply 2 times -1.
c=-\frac{16}{-2}
Now solve the equation c=\frac{-26±10}{-2} when ± is plus. Add -26 to 10.
c=8
Divide -16 by -2.
c=-\frac{36}{-2}
Now solve the equation c=\frac{-26±10}{-2} when ± is minus. Subtract 10 from -26.
c=18
Divide -36 by -2.
c=8 c=18
The equation is now solved.
144=26c-c^{2}
Use the distributive property to multiply 26-c by c.
26c-c^{2}=144
Swap sides so that all variable terms are on the left hand side.
-c^{2}+26c=144
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-c^{2}+26c}{-1}=\frac{144}{-1}
Divide both sides by -1.
c^{2}+\frac{26}{-1}c=\frac{144}{-1}
Dividing by -1 undoes the multiplication by -1.
c^{2}-26c=\frac{144}{-1}
Divide 26 by -1.
c^{2}-26c=-144
Divide 144 by -1.
c^{2}-26c+\left(-13\right)^{2}=-144+\left(-13\right)^{2}
Divide -26, the coefficient of the x term, by 2 to get -13. Then add the square of -13 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}-26c+169=-144+169
Square -13.
c^{2}-26c+169=25
Add -144 to 169.
\left(c-13\right)^{2}=25
Factor c^{2}-26c+169. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c-13\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
c-13=5 c-13=-5
Simplify.
c=18 c=8
Add 13 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}