Evaluate
\frac{16}{15}\approx 1.066666667
Factor
\frac{2 ^ {4}}{3 \cdot 5} = 1\frac{1}{15} = 1.0666666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{135)}\phantom{1}\\135\overline{)144}\\\end{array}
Use the 1^{st} digit 1 from dividend 144
\begin{array}{l}\phantom{135)}0\phantom{2}\\135\overline{)144}\\\end{array}
Since 1 is less than 135, use the next digit 4 from dividend 144 and add 0 to the quotient
\begin{array}{l}\phantom{135)}0\phantom{3}\\135\overline{)144}\\\end{array}
Use the 2^{nd} digit 4 from dividend 144
\begin{array}{l}\phantom{135)}00\phantom{4}\\135\overline{)144}\\\end{array}
Since 14 is less than 135, use the next digit 4 from dividend 144 and add 0 to the quotient
\begin{array}{l}\phantom{135)}00\phantom{5}\\135\overline{)144}\\\end{array}
Use the 3^{rd} digit 4 from dividend 144
\begin{array}{l}\phantom{135)}001\phantom{6}\\135\overline{)144}\\\phantom{135)}\underline{\phantom{}135\phantom{}}\\\phantom{135)99}9\\\end{array}
Find closest multiple of 135 to 144. We see that 1 \times 135 = 135 is the nearest. Now subtract 135 from 144 to get reminder 9. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }9
Since 9 is less than 135, stop the division. The reminder is 9. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}