Solve for x
x = -\frac{33}{8} = -4\frac{1}{8} = -4.125
Graph
Share
Copied to clipboard
144+8\left(x+3\right)\times 18=16\left(x+3\right)
Variable x cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by 8\left(x+3\right).
144+144\left(x+3\right)=16\left(x+3\right)
Multiply 8 and 18 to get 144.
144+144x+432=16\left(x+3\right)
Use the distributive property to multiply 144 by x+3.
576+144x=16\left(x+3\right)
Add 144 and 432 to get 576.
576+144x=16x+48
Use the distributive property to multiply 16 by x+3.
576+144x-16x=48
Subtract 16x from both sides.
576+128x=48
Combine 144x and -16x to get 128x.
128x=48-576
Subtract 576 from both sides.
128x=-528
Subtract 576 from 48 to get -528.
x=\frac{-528}{128}
Divide both sides by 128.
x=-\frac{33}{8}
Reduce the fraction \frac{-528}{128} to lowest terms by extracting and canceling out 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}