Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

169=\left(\sqrt{25-x^{2}}+\sqrt{144-x^{2}}\right)^{2}
Add 144 and 25 to get 169.
169=\left(\sqrt{25-x^{2}}\right)^{2}+2\sqrt{25-x^{2}}\sqrt{144-x^{2}}+\left(\sqrt{144-x^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{25-x^{2}}+\sqrt{144-x^{2}}\right)^{2}.
169=25-x^{2}+2\sqrt{25-x^{2}}\sqrt{144-x^{2}}+\left(\sqrt{144-x^{2}}\right)^{2}
Calculate \sqrt{25-x^{2}} to the power of 2 and get 25-x^{2}.
169=25-x^{2}+2\sqrt{25-x^{2}}\sqrt{144-x^{2}}+144-x^{2}
Calculate \sqrt{144-x^{2}} to the power of 2 and get 144-x^{2}.
169=169-x^{2}+2\sqrt{25-x^{2}}\sqrt{144-x^{2}}-x^{2}
Add 25 and 144 to get 169.
169=169-2x^{2}+2\sqrt{25-x^{2}}\sqrt{144-x^{2}}
Combine -x^{2} and -x^{2} to get -2x^{2}.
169-2x^{2}+2\sqrt{25-x^{2}}\sqrt{144-x^{2}}=169
Swap sides so that all variable terms are on the left hand side.
2\sqrt{25-x^{2}}\sqrt{144-x^{2}}=169-\left(169-2x^{2}\right)
Subtract 169-2x^{2} from both sides of the equation.
2\sqrt{25-x^{2}}\sqrt{144-x^{2}}=169-169+2x^{2}
To find the opposite of 169-2x^{2}, find the opposite of each term.
2\sqrt{25-x^{2}}\sqrt{144-x^{2}}=2x^{2}
Subtract 169 from 169 to get 0.
\sqrt{25-x^{2}}\sqrt{144-x^{2}}=x^{2}
Cancel out 2 on both sides.
\left(\sqrt{25-x^{2}}\sqrt{144-x^{2}}\right)^{2}=\left(x^{2}\right)^{2}
Square both sides of the equation.
\left(\sqrt{25-x^{2}}\sqrt{144-x^{2}}\right)^{2}=x^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(\sqrt{25-x^{2}}\right)^{2}\left(\sqrt{144-x^{2}}\right)^{2}=x^{4}
Expand \left(\sqrt{25-x^{2}}\sqrt{144-x^{2}}\right)^{2}.
\left(25-x^{2}\right)\left(\sqrt{144-x^{2}}\right)^{2}=x^{4}
Calculate \sqrt{25-x^{2}} to the power of 2 and get 25-x^{2}.
\left(25-x^{2}\right)\left(144-x^{2}\right)=x^{4}
Calculate \sqrt{144-x^{2}} to the power of 2 and get 144-x^{2}.
3600-169x^{2}+x^{4}=x^{4}
Use the distributive property to multiply 25-x^{2} by 144-x^{2} and combine like terms.
3600-169x^{2}+x^{4}-x^{4}=0
Subtract x^{4} from both sides.
3600-169x^{2}=0
Combine x^{4} and -x^{4} to get 0.
-169x^{2}=-3600
Subtract 3600 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-3600}{-169}
Divide both sides by -169.
x^{2}=\frac{3600}{169}
Fraction \frac{-3600}{-169} can be simplified to \frac{3600}{169} by removing the negative sign from both the numerator and the denominator.
x=\frac{60}{13} x=-\frac{60}{13}
Take the square root of both sides of the equation.
144+25=\left(\sqrt{25-\left(\frac{60}{13}\right)^{2}}+\sqrt{144-\left(\frac{60}{13}\right)^{2}}\right)^{2}
Substitute \frac{60}{13} for x in the equation 144+25=\left(\sqrt{25-x^{2}}+\sqrt{144-x^{2}}\right)^{2}.
169=169
Simplify. The value x=\frac{60}{13} satisfies the equation.
144+25=\left(\sqrt{25-\left(-\frac{60}{13}\right)^{2}}+\sqrt{144-\left(-\frac{60}{13}\right)^{2}}\right)^{2}
Substitute -\frac{60}{13} for x in the equation 144+25=\left(\sqrt{25-x^{2}}+\sqrt{144-x^{2}}\right)^{2}.
169=169
Simplify. The value x=-\frac{60}{13} satisfies the equation.
x=\frac{60}{13} x=-\frac{60}{13}
List all solutions of \sqrt{25-x^{2}}\sqrt{144-x^{2}}=x^{2}.