Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

144+y^{2}-4y+4=4\left(y+1\right)^{2}+36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
148+y^{2}-4y=4\left(y+1\right)^{2}+36
Add 144 and 4 to get 148.
148+y^{2}-4y=4\left(y^{2}+2y+1\right)+36
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+1\right)^{2}.
148+y^{2}-4y=4y^{2}+8y+4+36
Use the distributive property to multiply 4 by y^{2}+2y+1.
148+y^{2}-4y=4y^{2}+8y+40
Add 4 and 36 to get 40.
148+y^{2}-4y-4y^{2}=8y+40
Subtract 4y^{2} from both sides.
148-3y^{2}-4y=8y+40
Combine y^{2} and -4y^{2} to get -3y^{2}.
148-3y^{2}-4y-8y=40
Subtract 8y from both sides.
148-3y^{2}-12y=40
Combine -4y and -8y to get -12y.
148-3y^{2}-12y-40=0
Subtract 40 from both sides.
108-3y^{2}-12y=0
Subtract 40 from 148 to get 108.
-3y^{2}-12y+108=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-3\right)\times 108}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -12 for b, and 108 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-12\right)±\sqrt{144-4\left(-3\right)\times 108}}{2\left(-3\right)}
Square -12.
y=\frac{-\left(-12\right)±\sqrt{144+12\times 108}}{2\left(-3\right)}
Multiply -4 times -3.
y=\frac{-\left(-12\right)±\sqrt{144+1296}}{2\left(-3\right)}
Multiply 12 times 108.
y=\frac{-\left(-12\right)±\sqrt{1440}}{2\left(-3\right)}
Add 144 to 1296.
y=\frac{-\left(-12\right)±12\sqrt{10}}{2\left(-3\right)}
Take the square root of 1440.
y=\frac{12±12\sqrt{10}}{2\left(-3\right)}
The opposite of -12 is 12.
y=\frac{12±12\sqrt{10}}{-6}
Multiply 2 times -3.
y=\frac{12\sqrt{10}+12}{-6}
Now solve the equation y=\frac{12±12\sqrt{10}}{-6} when ± is plus. Add 12 to 12\sqrt{10}.
y=-2\sqrt{10}-2
Divide 12+12\sqrt{10} by -6.
y=\frac{12-12\sqrt{10}}{-6}
Now solve the equation y=\frac{12±12\sqrt{10}}{-6} when ± is minus. Subtract 12\sqrt{10} from 12.
y=2\sqrt{10}-2
Divide 12-12\sqrt{10} by -6.
y=-2\sqrt{10}-2 y=2\sqrt{10}-2
The equation is now solved.
144+y^{2}-4y+4=4\left(y+1\right)^{2}+36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
148+y^{2}-4y=4\left(y+1\right)^{2}+36
Add 144 and 4 to get 148.
148+y^{2}-4y=4\left(y^{2}+2y+1\right)+36
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+1\right)^{2}.
148+y^{2}-4y=4y^{2}+8y+4+36
Use the distributive property to multiply 4 by y^{2}+2y+1.
148+y^{2}-4y=4y^{2}+8y+40
Add 4 and 36 to get 40.
148+y^{2}-4y-4y^{2}=8y+40
Subtract 4y^{2} from both sides.
148-3y^{2}-4y=8y+40
Combine y^{2} and -4y^{2} to get -3y^{2}.
148-3y^{2}-4y-8y=40
Subtract 8y from both sides.
148-3y^{2}-12y=40
Combine -4y and -8y to get -12y.
-3y^{2}-12y=40-148
Subtract 148 from both sides.
-3y^{2}-12y=-108
Subtract 148 from 40 to get -108.
\frac{-3y^{2}-12y}{-3}=-\frac{108}{-3}
Divide both sides by -3.
y^{2}+\left(-\frac{12}{-3}\right)y=-\frac{108}{-3}
Dividing by -3 undoes the multiplication by -3.
y^{2}+4y=-\frac{108}{-3}
Divide -12 by -3.
y^{2}+4y=36
Divide -108 by -3.
y^{2}+4y+2^{2}=36+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+4y+4=36+4
Square 2.
y^{2}+4y+4=40
Add 36 to 4.
\left(y+2\right)^{2}=40
Factor y^{2}+4y+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+2\right)^{2}}=\sqrt{40}
Take the square root of both sides of the equation.
y+2=2\sqrt{10} y+2=-2\sqrt{10}
Simplify.
y=2\sqrt{10}-2 y=-2\sqrt{10}-2
Subtract 2 from both sides of the equation.