Evaluate
\frac{3575}{3}\approx 1191.666666667
Factor
\frac{5 ^ {2} \cdot 11 \cdot 13}{3} = 1191\frac{2}{3} = 1191.6666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)14300}\\\end{array}
Use the 1^{st} digit 1 from dividend 14300
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)14300}\\\end{array}
Since 1 is less than 12, use the next digit 4 from dividend 14300 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)14300}\\\end{array}
Use the 2^{nd} digit 4 from dividend 14300
\begin{array}{l}\phantom{12)}01\phantom{4}\\12\overline{)14300}\\\phantom{12)}\underline{\phantom{}12\phantom{999}}\\\phantom{12)9}2\\\end{array}
Find closest multiple of 12 to 14. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 14 to get reminder 2. Add 1 to quotient.
\begin{array}{l}\phantom{12)}01\phantom{5}\\12\overline{)14300}\\\phantom{12)}\underline{\phantom{}12\phantom{999}}\\\phantom{12)9}23\\\end{array}
Use the 3^{rd} digit 3 from dividend 14300
\begin{array}{l}\phantom{12)}011\phantom{6}\\12\overline{)14300}\\\phantom{12)}\underline{\phantom{}12\phantom{999}}\\\phantom{12)9}23\\\phantom{12)}\underline{\phantom{9}12\phantom{99}}\\\phantom{12)9}11\\\end{array}
Find closest multiple of 12 to 23. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 23 to get reminder 11. Add 1 to quotient.
\begin{array}{l}\phantom{12)}011\phantom{7}\\12\overline{)14300}\\\phantom{12)}\underline{\phantom{}12\phantom{999}}\\\phantom{12)9}23\\\phantom{12)}\underline{\phantom{9}12\phantom{99}}\\\phantom{12)9}110\\\end{array}
Use the 4^{th} digit 0 from dividend 14300
\begin{array}{l}\phantom{12)}0119\phantom{8}\\12\overline{)14300}\\\phantom{12)}\underline{\phantom{}12\phantom{999}}\\\phantom{12)9}23\\\phantom{12)}\underline{\phantom{9}12\phantom{99}}\\\phantom{12)9}110\\\phantom{12)}\underline{\phantom{9}108\phantom{9}}\\\phantom{12)999}2\\\end{array}
Find closest multiple of 12 to 110. We see that 9 \times 12 = 108 is the nearest. Now subtract 108 from 110 to get reminder 2. Add 9 to quotient.
\begin{array}{l}\phantom{12)}0119\phantom{9}\\12\overline{)14300}\\\phantom{12)}\underline{\phantom{}12\phantom{999}}\\\phantom{12)9}23\\\phantom{12)}\underline{\phantom{9}12\phantom{99}}\\\phantom{12)9}110\\\phantom{12)}\underline{\phantom{9}108\phantom{9}}\\\phantom{12)999}20\\\end{array}
Use the 5^{th} digit 0 from dividend 14300
\begin{array}{l}\phantom{12)}01191\phantom{10}\\12\overline{)14300}\\\phantom{12)}\underline{\phantom{}12\phantom{999}}\\\phantom{12)9}23\\\phantom{12)}\underline{\phantom{9}12\phantom{99}}\\\phantom{12)9}110\\\phantom{12)}\underline{\phantom{9}108\phantom{9}}\\\phantom{12)999}20\\\phantom{12)}\underline{\phantom{999}12\phantom{}}\\\phantom{12)9999}8\\\end{array}
Find closest multiple of 12 to 20. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 20 to get reminder 8. Add 1 to quotient.
\text{Quotient: }1191 \text{Reminder: }8
Since 8 is less than 12, stop the division. The reminder is 8. The topmost line 01191 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1191.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}