Evaluate
\frac{47}{4}=11.75
Factor
\frac{47}{2 ^ {2}} = 11\frac{3}{4} = 11.75
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)141}\\\end{array}
Use the 1^{st} digit 1 from dividend 141
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)141}\\\end{array}
Since 1 is less than 12, use the next digit 4 from dividend 141 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)141}\\\end{array}
Use the 2^{nd} digit 4 from dividend 141
\begin{array}{l}\phantom{12)}01\phantom{4}\\12\overline{)141}\\\phantom{12)}\underline{\phantom{}12\phantom{9}}\\\phantom{12)9}2\\\end{array}
Find closest multiple of 12 to 14. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 14 to get reminder 2. Add 1 to quotient.
\begin{array}{l}\phantom{12)}01\phantom{5}\\12\overline{)141}\\\phantom{12)}\underline{\phantom{}12\phantom{9}}\\\phantom{12)9}21\\\end{array}
Use the 3^{rd} digit 1 from dividend 141
\begin{array}{l}\phantom{12)}011\phantom{6}\\12\overline{)141}\\\phantom{12)}\underline{\phantom{}12\phantom{9}}\\\phantom{12)9}21\\\phantom{12)}\underline{\phantom{9}12\phantom{}}\\\phantom{12)99}9\\\end{array}
Find closest multiple of 12 to 21. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 21 to get reminder 9. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }9
Since 9 is less than 12, stop the division. The reminder is 9. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}