14025 \times ( 1 - n 15 \% )
Evaluate
-\frac{8415n}{4}+14025
Expand
-\frac{8415n}{4}+14025
Share
Copied to clipboard
14025\left(1-n\times \frac{3}{20}\right)
Reduce the fraction \frac{15}{100} to lowest terms by extracting and canceling out 5.
14025\left(1-\frac{3}{20}n\right)
Multiply -1 and \frac{3}{20} to get -\frac{3}{20}.
14025+14025\left(-\frac{3}{20}\right)n
Use the distributive property to multiply 14025 by 1-\frac{3}{20}n.
14025+\frac{14025\left(-3\right)}{20}n
Express 14025\left(-\frac{3}{20}\right) as a single fraction.
14025+\frac{-42075}{20}n
Multiply 14025 and -3 to get -42075.
14025-\frac{8415}{4}n
Reduce the fraction \frac{-42075}{20} to lowest terms by extracting and canceling out 5.
14025\left(1-n\times \frac{3}{20}\right)
Reduce the fraction \frac{15}{100} to lowest terms by extracting and canceling out 5.
14025\left(1-\frac{3}{20}n\right)
Multiply -1 and \frac{3}{20} to get -\frac{3}{20}.
14025+14025\left(-\frac{3}{20}\right)n
Use the distributive property to multiply 14025 by 1-\frac{3}{20}n.
14025+\frac{14025\left(-3\right)}{20}n
Express 14025\left(-\frac{3}{20}\right) as a single fraction.
14025+\frac{-42075}{20}n
Multiply 14025 and -3 to get -42075.
14025-\frac{8415}{4}n
Reduce the fraction \frac{-42075}{20} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}