Solve for x
x=\frac{\log_{1.24}\left(2\right)}{4}\approx 0.805567774
Solve for x (complex solution)
x=\frac{i\pi n_{1}}{2\ln(1.24)}+\frac{\log_{1.24}\left(2\right)}{4}
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
\frac{14000}{7000}=\left(1+\frac{0.96}{4}\right)^{4x}
Divide both sides by 7000.
2=\left(1+\frac{0.96}{4}\right)^{4x}
Divide 14000 by 7000 to get 2.
2=\left(1+\frac{96}{400}\right)^{4x}
Expand \frac{0.96}{4} by multiplying both numerator and the denominator by 100.
2=\left(1+\frac{6}{25}\right)^{4x}
Reduce the fraction \frac{96}{400} to lowest terms by extracting and canceling out 16.
2=\left(\frac{31}{25}\right)^{4x}
Add 1 and \frac{6}{25} to get \frac{31}{25}.
\left(\frac{31}{25}\right)^{4x}=2
Swap sides so that all variable terms are on the left hand side.
\log(\left(\frac{31}{25}\right)^{4x})=\log(2)
Take the logarithm of both sides of the equation.
4x\log(\frac{31}{25})=\log(2)
The logarithm of a number raised to a power is the power times the logarithm of the number.
4x=\frac{\log(2)}{\log(\frac{31}{25})}
Divide both sides by \log(\frac{31}{25}).
4x=\log_{\frac{31}{25}}\left(2\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\ln(2)}{4\ln(\frac{31}{25})}
Divide both sides by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}