Evaluate
\frac{7}{3}\approx 2.333333333
Factor
\frac{7}{3} = 2\frac{1}{3} = 2.3333333333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{600)}\phantom{1}\\600\overline{)1400}\\\end{array}
Use the 1^{st} digit 1 from dividend 1400
\begin{array}{l}\phantom{600)}0\phantom{2}\\600\overline{)1400}\\\end{array}
Since 1 is less than 600, use the next digit 4 from dividend 1400 and add 0 to the quotient
\begin{array}{l}\phantom{600)}0\phantom{3}\\600\overline{)1400}\\\end{array}
Use the 2^{nd} digit 4 from dividend 1400
\begin{array}{l}\phantom{600)}00\phantom{4}\\600\overline{)1400}\\\end{array}
Since 14 is less than 600, use the next digit 0 from dividend 1400 and add 0 to the quotient
\begin{array}{l}\phantom{600)}00\phantom{5}\\600\overline{)1400}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1400
\begin{array}{l}\phantom{600)}000\phantom{6}\\600\overline{)1400}\\\end{array}
Since 140 is less than 600, use the next digit 0 from dividend 1400 and add 0 to the quotient
\begin{array}{l}\phantom{600)}000\phantom{7}\\600\overline{)1400}\\\end{array}
Use the 4^{th} digit 0 from dividend 1400
\begin{array}{l}\phantom{600)}0002\phantom{8}\\600\overline{)1400}\\\phantom{600)}\underline{\phantom{}1200\phantom{}}\\\phantom{600)9}200\\\end{array}
Find closest multiple of 600 to 1400. We see that 2 \times 600 = 1200 is the nearest. Now subtract 1200 from 1400 to get reminder 200. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }200
Since 200 is less than 600, stop the division. The reminder is 200. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}