Solve for x
x = \frac{\sqrt{185}}{5} \approx 2.720294102
x = -\frac{\sqrt{185}}{5} \approx -2.720294102
Graph
Share
Copied to clipboard
14.8=2x^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}=14.8
Swap sides so that all variable terms are on the left hand side.
x^{2}=\frac{14.8}{2}
Divide both sides by 2.
x^{2}=\frac{148}{20}
Expand \frac{14.8}{2} by multiplying both numerator and the denominator by 10.
x^{2}=\frac{37}{5}
Reduce the fraction \frac{148}{20} to lowest terms by extracting and canceling out 4.
x=\frac{\sqrt{185}}{5} x=-\frac{\sqrt{185}}{5}
Take the square root of both sides of the equation.
14.8=2x^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}=14.8
Swap sides so that all variable terms are on the left hand side.
2x^{2}-14.8=0
Subtract 14.8 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-14.8\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -14.8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-14.8\right)}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\left(-14.8\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{118.4}}{2\times 2}
Multiply -8 times -14.8.
x=\frac{0±\frac{4\sqrt{185}}{5}}{2\times 2}
Take the square root of 118.4.
x=\frac{0±\frac{4\sqrt{185}}{5}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{185}}{5}
Now solve the equation x=\frac{0±\frac{4\sqrt{185}}{5}}{4} when ± is plus.
x=-\frac{\sqrt{185}}{5}
Now solve the equation x=\frac{0±\frac{4\sqrt{185}}{5}}{4} when ± is minus.
x=\frac{\sqrt{185}}{5} x=-\frac{\sqrt{185}}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}