Solve for w
w=-18
Share
Copied to clipboard
14.4=4.2w+84-\left(-6\right)
Use the distributive property to multiply 4.2 by w+20.
14.4=4.2w+84+6
The opposite of -6 is 6.
14.4=4.2w+90
Add 84 and 6 to get 90.
4.2w+90=14.4
Swap sides so that all variable terms are on the left hand side.
4.2w=14.4-90
Subtract 90 from both sides.
4.2w=-75.6
Subtract 90 from 14.4 to get -75.6.
w=\frac{-75.6}{4.2}
Divide both sides by 4.2.
w=\frac{-756}{42}
Expand \frac{-75.6}{4.2} by multiplying both numerator and the denominator by 10.
w=-18
Divide -756 by 42 to get -18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}