Solve for x
x = \frac{11}{5} = 2\frac{1}{5} = 2.2
Graph
Share
Copied to clipboard
14-\left(6-x\right)^{2}=x\left(2-x\right)
Multiply 6-x and 6-x to get \left(6-x\right)^{2}.
14-\left(36-12x+x^{2}\right)=x\left(2-x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-x\right)^{2}.
14-36+12x-x^{2}=x\left(2-x\right)
To find the opposite of 36-12x+x^{2}, find the opposite of each term.
-22+12x-x^{2}=x\left(2-x\right)
Subtract 36 from 14 to get -22.
-22+12x-x^{2}=2x-x^{2}
Use the distributive property to multiply x by 2-x.
-22+12x-x^{2}-2x=-x^{2}
Subtract 2x from both sides.
-22+10x-x^{2}=-x^{2}
Combine 12x and -2x to get 10x.
-22+10x-x^{2}+x^{2}=0
Add x^{2} to both sides.
-22+10x=0
Combine -x^{2} and x^{2} to get 0.
10x=22
Add 22 to both sides. Anything plus zero gives itself.
x=\frac{22}{10}
Divide both sides by 10.
x=\frac{11}{5}
Reduce the fraction \frac{22}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}