Solve for x
x=\frac{-7\sqrt{11}-79}{30}\approx -3.407212451
Graph
Share
Copied to clipboard
168+14\sqrt{11}=10-x\times 12\times 5
Use the distributive property to multiply 14 by 12+\sqrt{11}.
168+14\sqrt{11}=10-x\times 60
Multiply 12 and 5 to get 60.
10-x\times 60=168+14\sqrt{11}
Swap sides so that all variable terms are on the left hand side.
10-60x=168+14\sqrt{11}
Multiply -1 and 60 to get -60.
-60x=168+14\sqrt{11}-10
Subtract 10 from both sides.
-60x=158+14\sqrt{11}
Subtract 10 from 168 to get 158.
-60x=14\sqrt{11}+158
The equation is in standard form.
\frac{-60x}{-60}=\frac{14\sqrt{11}+158}{-60}
Divide both sides by -60.
x=\frac{14\sqrt{11}+158}{-60}
Dividing by -60 undoes the multiplication by -60.
x=\frac{-7\sqrt{11}-79}{30}
Divide 158+14\sqrt{11} by -60.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}