Solve for y
y=0.5
Graph
Share
Copied to clipboard
14\times \frac{69}{20}-14y+10y=46.3
Use the distributive property to multiply 14 by \frac{69}{20}-y.
\frac{14\times 69}{20}-14y+10y=46.3
Express 14\times \frac{69}{20} as a single fraction.
\frac{966}{20}-14y+10y=46.3
Multiply 14 and 69 to get 966.
\frac{483}{10}-14y+10y=46.3
Reduce the fraction \frac{966}{20} to lowest terms by extracting and canceling out 2.
\frac{483}{10}-4y=46.3
Combine -14y and 10y to get -4y.
-4y=46.3-\frac{483}{10}
Subtract \frac{483}{10} from both sides.
-4y=\frac{463}{10}-\frac{483}{10}
Convert decimal number 46.3 to fraction \frac{463}{10}.
-4y=\frac{463-483}{10}
Since \frac{463}{10} and \frac{483}{10} have the same denominator, subtract them by subtracting their numerators.
-4y=\frac{-20}{10}
Subtract 483 from 463 to get -20.
-4y=-2
Divide -20 by 10 to get -2.
y=\frac{-2}{-4}
Divide both sides by -4.
y=\frac{1}{2}
Reduce the fraction \frac{-2}{-4} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}